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ABSTRACT. We introduce an independence notion for choice functions, which we call
‘epistemic independence’ following the work by De Cooman et al. [17] for lower previsions,
and study it in a multivariate setting. This work is a continuation of earlier work of one of
the authors [29], and our results build on the characterization of choice functions in terms of
sets of binary preferences recently established by De Bock and De Cooman [11]. We obtain
the many-to-one independent natural extension in this framework. Given the generality of
choice functions, our expression for the independent natural extension is the most general
one we are aware of, and we show how it implies the independent natural extension for
sets of desirable gambles, and therefore also for less expressive imprecise-probabilistic
models. Once this is in place, we compare this concept of epistemic independence to another
independence concept for choice functions proposed by Seidenfeld [28], which De Bock
and De Cooman [2] have called S-independence. We show that neither is more general than
the other.

1. INTRODUCTION

We study independence concepts for choice functions. Choice functions are a very general
imprecise-probabilistic uncertainty model, which has gained increasing interest, instigated
by their introduction by Seidenfeld et al. [19, 28]. Rather than working with choice functions
directly, we instead work with the completely equivalent framework of sets of desirable
gamble sets [11, 12], which inherits its great expressive power. A strict generalization of
the more familiar framework of sets of desirable gambles [16, 24, 27, 31], it also allows
us to model preferences that are not expressible by mere binary comparisons between
options. The dark side of this great power is that sets of desirable gamble sets are typically
difficult to work with. They can capture exotic and complicated sorts of opinions and
may be computationally demanding. Luckily, it is often manageable to model simple local
assessments about variables of interest. In this paper, we investigate the least informative
way of combining these assessments into a joint set of desirable gamble sets, assuming
that the variables in question are “epistemically independent.” We call this the independent
natural extension. This allows us to turn simple local assessments into a global model.

The first few sections of the paper introduce key formal and notational details and review
relevant extant results. We then develop a very general notion of epistemic irrelevance
in the sets of desirable gambles sets framework. It specifies when learning a (possibly
partial) answer to one question (a nonempty subset of one set of events) provides no relevant
information, in the agent’s view, to some other question (characterized by a different set
of events): epistemic irrelevance for sets of events. In the bulk of the paper, we focus
specifically on judgments of epistemic irrelevance between variables (learning a partial
answer about the values of certain variables provides no relevant information about the
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values of another variable). Given local assessments about variables, we characterize their
independent natural extension and show that this set of desirable gamble sets can be obtained
using a modified version of the independent natural extension for sets of desirable gambles.
This is the primary contribution of our paper. We also compare our notion of epistemic
independence to another independence notion proposed by Seidenfeld [28], which De Bock
and De Cooman [2] have called S-independence. We show that neither is more general than
the other. In this part of the paper, we appeal to the more general sets-of-events definition of
irrelevance, which has the benefit of not assuming logical independence of the two questions
at issue.

This paper is an extended journal version of [30], and contains proofs, a new Section 4, and
additional examples throughout. Importantly, Theorem 15 corrects [30, Theorem 20] whose
statement was flawed.

2. CHOICE AND DESIRABILITY

We start by considering the simple case of binary choice and explain how sets of desirable
gambles represent these binary preferences. Then we introduce choice functions (via their
dual: rejection functions), and explain how they generalize sets of desirable gambles. Finally,
we introduce the main formalism we will be working with for most of the paper: sets of de-
sirable gamble sets, which De Bock and de Cooman [11] have shown are representationally
equivalent to choice functions.

Consider a finite set Ω—called possibility space—of possible values that a (discrete)
uncertain variable X can take. We denote by ℒ(Ω) the set of all gambles—real-valued
functions—on Ω, often denoted by ℒ when it is clear from the context what the possibility
space is. We interpret a gamble f as an uncertain reward: if the actual outcome turns out
to be ω in Ω, then the agent’s capital changes by f (ω). For any two gambles f and g,
we write f ≤ g when f (ω) ≤ g(ω) for all ω in Ω, and we write f < g when f ≤ g and
f ≠ g. We identify a real constant α with the (constant) gamble that maps every element
of Ω to α . We collect all the non-negative gambles—the gambles f for which f ≥ 0—in
the set ℒ(Ω)≥0 (often denoted by ℒ≥0), the non-negative and non-zero ones—for which
f > 0—in ℒ(Ω)>0 (often denoted by ℒ>0), and the non-positive ones—for which f ≤ 0—in
ℒ(Ω)≤0 (often denoted by ℒ≤0). For future reference, we let A1+A2 ∶= { f +g∶ f ∈A1,g ∈A2}
be the Minkowski addition of two sets A1,A2 ⊆ℒ. Furthermore, for any set A ⊆ℒ, we let
−A ∶= {− f ∶ f ∈ A}, and define the subtraction A1−A2 ∶= A1+(−A2) = { f −g∶ f ∈ A1,g ∈ A2},
for any two sets A1,A2 ⊆ℒ.

We denote by 𝒬(Ω) the set of all finite but nonempty subsets of ℒ(Ω), also denoted by
𝒬 when it is clear from the context what Ω is. 𝒬 is a subset of the power set 𝒫(ℒ) of ℒ.
Elements of 𝒬 are called gamble sets.

2.1. Binary Choice: Sets of Desirable Gambles. Suppose an agent is offered a choice
between two gambles—any binary { f ,g} ∈𝒬. We are not assuming that the agent has
enough information to be able to always decide which of these two they prefer. We interpret
preference of g over f as a willingness to give up f in exchange for g, which is the same as
preferring g− f to the status quo; strict preference (which rules out indifference) of g over
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f also includes the unwillingness to make the opposite trade. The status quo can also be
represented by the gamble 0, which results in no change to the agent’s net worth. In this way,
all preferences between gambles { f ,g} can also be represented by the two comparisons: 0
vs. g− f and 0 vs. f −g. For this reason, any (strict) binary preferences the agent might have,
can be represented by a set of desirable gambles which collects all the gambles that the agent
prefers to the status quo 0. They were introduced by Seidenfeld et al. [27], and have been
studied extensively by Walley [31, 32], De Cooman and Quaeghebeur [16], De Cooman and
Miranda [15] and Quaeghebeur [24], amongst others. Formally, a set of desirable gambles
on Ω is a subset D ⊆ℒ(Ω) of gambles that are preferred over 0. We collect all the sets of
desirable gambles in 𝒟 ∶=𝒫(ℒ).
Definition 1 (Coherent set of desirable gambles). A set of desirable gambles D is called
coherent if for all f and g in ℒ, and λ and µ in R:

D1. 0 ∉D;
D2. ℒ>0 ⊆D;
D3. if f,g ∈D and (λ ,µ) > 0, then λ f +µg ∈D.

We collect all the coherent sets of desirable gambles in 𝒟(Ω), also denoted by 𝒟 when it is
clear from the context what the possibility space Ω is.

Before we proceed, let us introduce some notational shortcuts. For any m and n in N∪{0},1

we define m ∶n as the set {m, . . . ,n}, which we take to be the empty set when n <m. We will
use both notations m ∶n and {m, . . . ,n} throughout. We denote any sequence (λ1, . . . ,λn) by
λ1∶n, and define λ1∶n > 0⇔ ((∀ j ∈ {1, . . . ,n})λ j ≥ 0 and (∃ j ∈ {1, . . . ,n})λ j > 0) for any real-
valued sequence λ1∶n. In other words, this means that λ1∶n > 0⇔ (λ1∶n ≥ 0 and ¬(λ1∶n = 0)),
where we let ‘≥’ and ‘=’ work point-wisely on (λ1, . . . ,λn).

This short-hand notation for sequences allows us, for instance, to efficiently introduce the
posi operator on 𝒟: posi(B) ∶= {∑m

k=1 λk fk∶m ∈N, f1∶m ∈ Bm,λ1∶m > 0} for all B ⊆ℒ. posi(B)
may be interpreted as the smallest convex cone that includes B.

We call the set of desirable gambles D1 at most as informative as the set of desirable
gambles D2 if D1 ⊆D2. The partially ordered set (𝒟,⊆) of coherent sets of desirable gamble
is a complete meet-semilattice. This implies that if a partially specified set B ⊆ ℒ can be
coherently extended—in other words, if D(B) ∶= {D ∈𝒟 ∶B ⊆D} ≠∅, in which case we will
call B consistent—there is a unique least informative such extension cl

𝒟
(B) ∶=⋂D(B):

Theorem 1 ([16, Theorem 1]). Consider any assessment B ⊆ℒ. Then B is consistent if and
only if ℒ≤0∩posi(B) =∅. If this is the case, then cl

𝒟
(B) = posi(ℒ>0∪B).

Theorem 1 implies that the smallest coherent—called vacuous—set of desirable gamble set
is Dv ∶=ℒ>0.

2.2. Choice Functions. For our purposes, it is easiest to motivate choice functions in
terms of their duals, rejection functions, introduced in an imprecise-probabilistic context by
Seidenfeld et al. [28].

1We let N be the positive natural numbers. We let R>0 ∶= {x ∈R∶x > 0} be the positive real numbers.
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Suppose an agent is going to be posed a decision problem consisting of choosing some
gamble from among a proffered nonempty, finite subset of gambles—an element of 𝒬. For
an agent with imprecise-probabilistic beliefs, there may be no gamble they can select as
the best option; even so, it will often be the case that an agent can reject certain options
as certainly suboptimal. For instance, suppose the agent has a credal setℳ of probability
mass functions on Ω that represent their uncertainty. When offered A ∈𝒬, our agent might
choose to reject any gamble g such that (∀p ∈ℳ)(∃ f ∈ A)Ep( f ) > Ep(g). This means that
there is some subset of A that the agent knows contains a strictly better choice than g—even
if they cannot identify a single gamble that is better. For each possible set of options the
agent might be presented with, the agent’s rejection function collects all the gambles that
are judged to be suboptimal in this way.

Definition 2. A rejection function is a function R∶𝒬→𝒬∶A↦ R(A) ⊆ A.

The idea is that R identifies the rejected options from every decision problem posed by
A ∈𝒬.

The agent’s choice set C(A) from a gamble set A collects all of the gambles A∖R(A) not
rejected in this way.

Definition 3. A choice function is a function C∶𝒬→𝒬∶A↦C(A) ⊆ A.

Given a rejection function R, the dual choice function C that represents the same preferences
is given by C(A) ∶=A∖R(A), for all A in𝒬 and, similarly, given a choice function C, the dual
rejection function R is given by R(A) ∶=A∖C(A), for all A in𝒬. As A∖(A∖R(A)) =R(A),
and similarly for C, we conclude that R and C are equivalent representations of the same
preferences, so we can use either.

Choice functions generalize sets of desirable gambles, in the following sense. Given a choice
function C, its binary part can be summarized by DC ∶= { f ∈ℒ∶0 ∉C({0, f})}. There will be
different choice functions C1 ≠C2 whose binary parts DC1 =DC2 coincide; see Section 2.4
for more information.

2.3. Sets of Desirable Gamble Sets. De Bock and de Cooman [11] established another
useful equivalent representation to choice functions.

Definition 4 (Set of desirable gamble sets). A set of desirable gamble sets K on Ω is a
subset of 𝒬(Ω). We collect all the sets of desirable gamble sets in 𝒦 ∶=𝒫(𝒬).

The idea is that the set of desirable gamble sets K collects all the gamble sets that contain
at least one gamble that the agent strictly prefers over the status quo 0. A set of desirable
gamble sets K is an equivalent representation to a choice function C: given a choice function
C, the corresponding set of desirable gamble sets K is given by K ∶= {A ∈𝒬∶0 ∉C({0}∪A)},
and therefore A ∈ K⇔ 0 ∉C({0}∪A)⇔ 0 ∈ R({0}∪A), for any gamble set A. In other
words, K collects all the gamble sets that contain some gamble preferred to 0. Conversely,
given a set of desirable gamble sets K, its corresponding rejection function R is given
by R(A) ∶= { f ∈ A∶A − { f} ∈ K}—and therefore its corresponding choice function C by
C(A) ∶= { f ∈ A∶A−{ f} ∉K}—for every gamble set A. Under conditions that are implied by
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coherence, which we are about to define for sets of desirable gamble sets in Definition 5
underneath, and for which we refer to [11] for choice functions, both correspondences
commute [see [11]]. Moreover, coherence is preserved by the correspondences. Given this
connection, all our results in this paper will apply for choice functions as well. We will use
sets of desirable gamble sets mainly for practical reasons: they are easier to work with.

De Bock and De Cooman [11] gave an axiomatization of coherent sets of desirable gam-
ble sets—sets of desirable gamble sets of rational agents. We refer to their article for a
justification of the axioms.

Definition 5 (Coherent set of desirable gamble sets). A set of desirable gamble sets K ⊆𝒬
is called coherent if for all A, A1 and A2 in 𝒬, all {λ f ,g ,µ f ,g ∶ f ∈ A1,g ∈ A2} ⊆R, and all f
in ℒ:

K0. ∅ ∉K;
K1. A ∈K⇒ A∖{0} ∈K;
K2. { f} ∈K, for all f in ℒ>0;
K3. if A1,A2 ∈K and if, for all f in A1 and g in A2, (λ f ,g ,µ f ,g) > 0, then {λ f ,g f +µ f ,gg∶ f ∈

A1,g ∈ A2} ∈K;
K4. if A1 ∈K and A1 ⊆ A2 then A2 ∈K.

We collect all the coherent sets of desirable gamble sets in the collection𝒦(Ω), often simply
denoted by 𝒦.

In item K3 of this definition we have used the short-hand notation (λ f ,g,µ f ,g) > 0 introduced
earlier, which means ‘λ f ,g ≥ 0 and µ f ,g ≥ 0, with at least one of the real numbers λ f ,g and
µ f ,g strictly positive’.

Given two sets of desirable gamble sets K1 and K2, we follow De Bock and De Cooman [11]
in calling K1 at most as informative as K2 if K1 ⊆ K2. The resulting partially ordered set
(𝒦,⊆) is a complete lattice where intersection serves the role of infimum, and union that of
supremum. De Bock and De Cooman [11, Theorem 8] furthermore show that the partially
ordered set (𝒦,⊆) of coherent sets of desirable gamble sets is a complete meet-semilattice:
given an arbitrary family {Ki∶ i ∈ I} ⊆𝒦, its infimum inf{Ki∶ i ∈ I} =⋂i∈I Ki is a coherent set
of desirable gamble sets. This allows for conservative reasoning: it makes it possible to
extend a partially specified set of desirable gamble sets to the most conservative—least
informative—coherent one that includes it. This procedure is called natural extension:

Definition 6 ([11, Definition 9]). For any assessment𝒜 ⊆𝒬, we let K(𝒜) ∶= {K ∈𝒦∶𝒜 ⊆K}.
We call the assessment 𝒜 consistent if K(𝒜) ≠∅, and we then call cl

𝒦
(𝒜) ∶=⋂K(𝒜) the

natural extension of 𝒜.

One of the main results of De Bock and De Cooman [11] is their expression for the natural
extension:

Theorem 2 ([11, Theorem 10]). Consider any assessment𝒜⊆𝒬. Then𝒜 is consistent if and
only if ∅ ∉𝒜 and {0} ∉Posi(ℒs

>0∪𝒜). If this is the case, then cl
𝒦
(𝒜) =Rs(Posi(ℒs

>0∪𝒜)).
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Here we used the set ℒs(Ω)>0 ∶= {{ f}∶ f ∈ℒ(Ω)>0}—often denoted simply by ℒs
>0—and

the two operations on 𝒦 defined by Rs(K) ∶= {A ∈𝒬∶(∃B ∈K)B∖ℒ≤0 ⊆ A} and

Posi(K) ∶= {{
m

∑
k=1

λ
f1∶m

k fk∶ f1∶m ∈
m
⨉
ℓ=1

Aℓ(︀∶m ∈N,A1, . . . ,Am ∈K,(∀ f1∶m ∈
m
⨉
ℓ=1

Aℓ)λ
f1∶m

1∶m > 0(︀

for all K in 𝒦. Both Rs and Posi are closure operators: they are extensive, monotone and
idempotent; this implies in particular that Rs(posi(K)) =K, for any K ∈𝒦.

2.4. Binary Choice and Representation. A set of desirable gamble sets K collects all
the gamble sets A that contain at least one gamble that the agent strictly prefers over 0.
For instance, the agent may know that one of { f1, f2} is preferred over 0, but she may not
know which one it is. So K can represent more than binary choice: indeed, she may have
no preference in the binary choices {0, f1} and {0, f2}, but in the ternary choice {0, f1, f2}
reject 0. In this section we will quickly summarize relevant known results about the binary
choices captured by a set of desirable gamble sets.

Given a set of desirable gamble sets K, its binary behavior is summarized in the set of
desirable gambles DK ∶= { f ∈ℒ∶{ f} ∈ K}; DK contains the gambles f that form desirable
gamble singletons { f} ∈K. Recall that the gamble singletons { f} represent a binary choice
between f and 0, and therefore between any gambles g and h for which g−h = f .

Conversely, given a coherent set of desirable gambles D, there might be multiple coherent
K that imply the same binary choices DK that are reflected in D: the nonempty collection
{K ∈𝒦∶DK =D} may have more than one element. However, it always contains one unique
smallest element, which we call KD ∶= {A ∈𝒬∶A∩D ≠∅} [see [29, Proposition 5]]. De Bock
and De Cooman [12, Proposition 8] show that KD is coherent if and only if D is. We call
any set of desirable gamble sets K binary if there is a set of desirable gambles D such that
K =KD . The smallest coherent—called vacuous—set of desirable gamble sets is binary, and
given by Kv =KDv = {A ∈𝒬∶A∩ℒ>0 ≠∅}.

De Bock and De Cooman [11] establish an important representation result for coherent sets
of desirable gamble sets. They show that any coherent set of desirable gamble sets K can be
represented by a collection D of coherent sets of desirable gambles:2

Theorem 3 (Representation [12, Theorem 9]). Any set of desirable gamble sets K is coherent
if and only if there is a nonempty set D ⊆𝒟 of coherent sets of desirable gambles such
that K =⋂{KD ∶D ∈D}. We then say that D represents K. Moreover, K’s largest representing
set is D(K) ∶= {D ∈𝒟 ∶K ⊆KD}.

Note that D(K) is an up-set in 𝒟: if D1 ∈D(K) and D1 ⊆D2, then D2 ∈D(K), for any D1
and D2 in 𝒟 . Given a coherent set of desirable gambles D, the set ↑D ∶= {D′ ∈𝒟 ∶D ⊆D′} is
the smallest up-set that contains D. Given a collection D ⊆𝒟 of coherent sets of desirable
gambles, we denote by ↑D ∶= {D′ ∈ 𝒟 ∶(∃D ∈ D)D ⊆ D′} = ⋃D∈D ↑D the smallest up-set
containing D. Since D(K) is an up-set, we have ↑D(K) =D(K). It turns out that up-sets are
useful in determining whether a given coherent set of desirable gamble sets K is represented
by some D ⊆𝒟 .

2This theorem first appeared in De Bock and De Cooman [11, Theorem 7], but we prefer their later formulation
in [12, Theorem 9].
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Proposition 4. Consider any coherent set of desirable gamble sets K and any D ⊆ 𝒟 .
If ↑D =D(K), then D represents K.

Proof. That ↑D = D(K) implies that D ⊆ D(K), whence ⋂D∈D KD ⊇ K, so it remains to
show that ⋂D∈D KD ⊆K. To this end, consider any A in ⋂D∈D KD . Then (∀D ∈D)A∩D ≠∅,
which implies (∀D ∈ ↑D)A∩D ≠∅ since every element of ↑D is a superset of an element
of D, and hence preserves the property of intersecting A. But since ↑D = D(K), this set
represents K, whence, indeed, A ∈K. □

Note that the reverse implication does not hold.3

Example 1. Work with the binary possibility space Ω ∶= {H,T} and consider the vacuous
set of desirable gamble sets Kv on Ω, introduced earlier in this section, where we observed
that Kv is a binary set of desirable gamble sets KDv so it is represented by {Dv}. Its largest
representation is D(Kv) = 𝒟 , the set of all coherent sets of desirable gambles. We will
show that D ∶=𝒟 ∖{Dv}, the collection of all coherent sets of desirable gambles except the
vacuous one, represents the same set of desirable gamble sets Kv. Note that D is an up-set,
so ↑D =D ≠D(Kv), and hence this establishes that Kv has a representation D whose up-set
differs from D(Kv).

To check that the set of desirable gamble sets K⋆ ∶= ⋂D∈D KD—which is coherent by
Theorem 3—equals Kv, since D ⊆D(Kv) we only need to check K⋆ ⊆Kv. To do so, consider
any A ∉ Kv, whence A∩ℒ>0 =∅. If A ⊆ℒ≤0 then for every D in D we find that A∩D =∅
by D’s coherence4 whence A ∉ K⋆. So assume that A ⊈ ℒ≤0. Then B ∶= { f

⋃︀ f(H)⋃︀+⋃︀ f(T)⋃︀ ∶ f ∈
A∖ℒ≤0} is nonempty, and also B∩(ℒ≤0∪ℒ>0) =∅. This implies that every element g of
B can be denoted as g = (g(H),g(T)) = (−αg ,1−αg) or as g = (1−αg ,−αg) for some αg
in (0,1). Let α

⋆ ∶=min{αg ∶g ∈ B}, and g⋆ be an element of B for which this minimum
is reached—so it is an element of B such that g⋆ = (−α

⋆,1−α
⋆) or g⋆ = (1−α

⋆,−α
⋆).

Consider D⋆ ∶= posi({g⋆ + α
⋆

2 }∪ℒ>0), which is a coherent set of desirable gambles due

to Theorem 1 since g⋆ ∉ℒ≤0 and therefore also g⋆+ α
⋆

2 ∉ℒ≤0. Note that g⋆+ α
⋆

2 either is

equal to (−α
⋆

2 ,1− α
⋆

2 ) or to (1− α
⋆

2 ,−α
⋆

2 ); in any case g⋆+ α
⋆

2 ∉ℒ>0 so D⋆ ≠Dv, whence

D⋆ ∈D. An element (−α,1−α) or (1−α,−α) of B would belong to D⋆ only if α ≤ α
⋆

2 ,

3The converse implication does hold for a generalisation of our sets of desirable gamble sets that can contain
infinite gamble sets, appropriately defined by Jasper De Bock in private communication and ongoing work [1] and
also by Campbell-Moore [3]. To see this, consider any D ⊆𝒟 that represents a given coherent set of desirable
gamble sets K: this means that K =⋂D∈D KD , or, in other words, that A ∈ K⇔ (∀D ∈ D)A ∩D ≠ ∅, for every
gamble set A. Since every element of ↑D is a superset of an element of D, this implies that ↑D represents K, too.
But then a representation theorem of De Bock [1, Theorem 1] valid in this context implies that ↑D ⊆D(K): this
theorem concludes that D(K) is the largest set of sets of desirable gambles that represents K, so any other set of
sets of desirable gambles that represents K must be subset of D(K). Assume ex absurdo that ↑D ≠D(K), which
would imply that ↑D ⊂ D(K), so there would be some D⋆ in D(K) such that D⋆ ∉ ↑D, and hence D⋆ ⊉ D for
every D in D. For every D in D, consider any fD in the nonempty D ∖D⋆, and let A ∶= { fD ∶D ∈D}, a possibly
infinite gamble set. Then, for every D in D, we would find that fD belongs to A ∩D, whence A ∩D ≠∅. Since D
represents K, this would imply that A ∈ K. But A ∩D⋆ =∅ so A ∉⋂D′∈D(K)KD′ , implying that D(K) does not
represent K, a contradiction with the conclusions of [1, Theorem 1].

4To see this, first note that 0 ∉ D by Axiom D1. Moreover, for any gamble f < 0 we find that − f > 0 so
Axiom D1 implies that − f ∈D. If also f would belong to D, then by Axiom D3 with g ∶= − f and (λ ,µ) = (1,1)
we would find that f − f = 0 ∈D, contradicting Axiom D1.
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which is impossible due to the definition of α
⋆, whence B ∩D⋆ = ∅. Since A consists of

scaled versions of elements of B, together with a subset of ℒ≤0, we find that also A∩D⋆ =∅.
But this implies that, indeed, A ∉K⋆.

The figure underneath illustrates the idea of this example. Of the gamble set A ={ f1, f2, f3, f4}
the gamble f1 corresponding to g⋆ above is indicated with a black dot. This gamble is used
to construct D⋆ different from Dv which does not intersect A.

ω1

ω2

f1

f2
f3

f4

D⋆

◊

We end this section by introducing an important class of coherent sets of desirable gamble
sets, namely the E-admissible sets of desirable gamble sets, which we will use later on.

Example 2. Consider an arbitrary nonempty (possibly non-convex) collectionℳ ⊆ ΣΩ ∶=
{p ∈ℒ(Ω)≥0∶∑ω∈Ω p(ω) = 1} of probability mass functions on Ω, called a credal set.5 Let
us associate with it the E-admissible set of desirable gamble sets

Kℳ ∶= {A ∈𝒬∶A∩ℒ>0 ≠∅ or (∀p ∈ℳ)(∃ f ∈ A)Ep( f) > 0}.
Kℳ collects all the gamble sets A that either contain a non-negative non-zero gamble, or
for every probability mass function p inℳ contain a gamble with positive p-expectation.

Let us show that Kℳ is a coherent set of desirable gamble sets. One way to obtain this result
is by checking that it satisfies all the rationality requirements from Definition 5, which is a
cumbersome task. Thanks to Theorem 3 there is a much more elegant way to obtain this: we
claim that Kℳ is represented by the nonempty {Dp∶ p ∈ℳ} ⊆𝒟 , and is therefore coherent.
Here Dp ∶= { f ∈ℒ∶ f ∈ℒ>0 or Ep( f) > 0} is the coherent set of desirable gambles that either
have a positive p-expectation or are non-negative and non-zero.

Lemma 5. Kℳ is represented by {Dp∶ p ∈ℳ}.

Proof. We will show that (i) Kℳ ⊆⋂{KDp ∶ p ∈ℳ} and (ii) Kℳ ⊇⋂{KDp ∶ p ∈ℳ}. For (i),
consider any A in Kℳ, meaning that A ∩ℒ>0 ≠ ∅ or (∀p ∈ℳ)(∃ f ∈ A)Ep( f ) > 0. Both
cases imply that A ∩Dp ≠ ∅ for every p in ℳ, whence indeed A ∈ ⋂{KDp ∶ p ∈ℳ}. For

5
ΣΩ is called the simplex on Ω: it is the collection of all probability mass functions on Ω.
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(ii), consider any A in ⋂{KDp ∶ p ∈ℳ}, meaning that A∩Dp ≠∅ for all p inℳ, and hence
indeed A ∈Kℳ. □

Therefore, by Theorem 3 and Lemma 5 we conclude that Kℳ is coherent.

The choice function Cℳ that corresponds to Kℳ, is given by Cℳ(A) =⋃p∈ℳ{ f ∈ A∶(∀g ∈
A)(Ep( f) ≥ Ep(g) and g ⇑> f}), for every A ∈ 𝒬. Indeed, using the correspondence f ∈
Cℳ(A)⇔ A −{ f} ∉ Kℳ for every A in 𝒬 and f in A, discussed in Section 2, we find
that f ∈ Cℳ(A)⇔ ((A − { f})∩ℒ>0 = ∅ and (∃p ∈ℳ)(∀g ∈ A − { f})Ep(g) ≤ 0). The
first conjunct is equivalent to (∀g ∈ A)g ⇑> f , and the second conjunct to (∃p ∈ℳ)(∀g ∈
A)Ep( f ) ≥ Ep(g), taking into account the linearity of Ep, which establishes the proposed
expression for Cℳ. This explains the reason why we decided to call Kℳ ‘E-admissible’:
Cℳ is the E-admissible choice function [22, 25].6 ◊

Jasper De Bock and Gert de Cooman showed us via private communication that Theorem 3
also allows for a simpler expression for the natural extension:

Theorem 6 (Due to De Bock & De Cooman). An assessment𝒜 ⊆𝒬 is consistent if and only
if there is some D in𝒟 such that 𝒜 ⊆KD . In that case cl

𝒦
(𝒜) =⋂{KD ∶D ∈𝒟 and 𝒜 ⊆KD}.

As a consequence, any consistent assessment 𝒜’s natural extension is represented by
{D ∈𝒟 ∶𝒜 ⊆KD} = {D ∈𝒟 ∶(∀B ∈𝒜)B∩D ≠∅}⌋︀.

3. CONDITIONING

Suppose that we have a belief model about the uncertain variable X , be it a coherent
set of desirable gamble sets on Ω or a coherent set of desirable gambles on Ω, or—less
generally—a set of probability mass functions on Ω. (We can think of a precise probability
as a singleton.) When new information becomes available in the form of ‘X assumes a value
in some (nonempty) subset E of Ω’, we can take this into account by conditioning our belief
model on E.

We will let any event, except for the (trivially) impossible event ∅, serve as a conditioning
event. We collect the allowed conditioning events in 𝒫+(Ω) ∶= {E ⊆Ω∶E ≠∅}. For any E
in 𝒫+(Ω) and any gamble f on E, we let its multiplication IE f denote the gamble on Ω

defined by

(IE f )(ω) ∶=
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

f (ω) if ω ∈ E
0 if ω ∉ E

(1)

for all ω in Ω. IE f is the called-off version of f: if E does not occur, the gamble will yield 0.
We will often also use indicator gambles (which we also sometimes refer to simply as
“indicators”) IE ∶= IE1 for every E ⊆Ω; it follows from the definition above that IE equals 1
on E and 0 on Ec.

6Although Levi’s notion of E-admissibility was originally concerned with convex closed sets of probability
mass functions [22, Chapter 5], we impose no such requirement here on the setℳ.
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Definition 7 (Conditioning). Given any set of desirable gamble sets K on Ω and any
E in 𝒫+(Ω), we define the conditional set of desirable gamble sets K⧹︀E on ℒ(E) as
K⧹︀E ∶= {A ∈𝒬(E)∶IEA ∈ K}, where for any A in 𝒬(E) and E in 𝒫+(Ω), we let IEA ∶=
{IEg∶g ∈ A} ∈𝒬(Ω) be a set of called-off gambles.

It follows at once that conditioning preserves the order: if K1 ⊆K2 then K1⧹︀E ⊆K2⧹︀E. This
definition coincides with the usual definition for sets of desirable gambles, in the sense that
KD⧹︀E =KD⧹︀E , where

D⧹︀E ∶= { f ∈ℒ(E)∶IE f ∈D} (2)
is the set of desirable gambles conditional on E (see Van Camp and Miranda [29, Proposi-
tions 8]). For more details about conditioning sets of desirable gambles, we refer to [16, 31].
In order to elegantly work with K⧹︀E’s representation in terms of sets of desirable gambles,
let us define D⧹︀E ∶= {D⧹︀E∶D ∈D} for any D ⊆𝒟.

Proposition 7. Consider any coherent set of desirable gamble sets K on Ω, any representa-
tion D of K, and any conditioning event E in 𝒫+. Then K⧹︀E is coherent. Furthermore, K⧹︀E
is represented by D⧹︀E, meaning that K⧹︀E =⋂{KD ∶D ∈D⧹︀E}.

Proof. The first statement is already established by Van Camp and Miranda [29, Proposi-
tions 7], so we limit ourselves to proving the second statement. To this end, consider any A
in 𝒬(E), and infer the following chain of equivalences:

A ∈K⧹︀E⇔ IEA ∈K⇔ (∀D ∈D)IEA∩D ≠∅⇔ (∀D ∈D⧹︀E)A∩D ≠∅⇔ A ∈ ⋂
D∈D⧹︀E

KD ,

where the second equivalence follows from the assumption that D represents K. Since the
choice of A in 𝒬(E) was arbitrary, this implies that, indeed, K⧹︀E =⋂{KD ∶D ∈D⧹︀E}. □

As a consequence, since any coherent K is represented by D(K), Proposition 7 implies that
in particular K⧹︀E =⋂{KD ∶D ∈D(K)⧹︀E}.

Example 3. Let us build on Example 2, and condition the E-admissible set of desirable
gamble sets Kℳ for some credal setℳ ⊆ int(Σ𝒳 ),7 on an event G in 𝒫+(Ω). Then, for
any A in 𝒬(G), we have A ∈Kℳ⧹︀G⇔ IGA ∈Kℳ, which is equivalent to the requirement
that for any p in ℳ there is some f in A such that Ep(IG f) > 0, or IGA ∩ℒ(Ω)>0 ≠ ∅.
Consider some p inℳ. Sinceℳ ⊆ int(Σ𝒳 ), the p-expectation Ep(g) > 0 is positive for
every non-negative and non-zero g, so the requirement IGA∩ℒ(Ω)>0 ≠∅ implies that there
is some f in A such that Ep(IG f) > 0. So we find A ∈Kℳ⧹︀G if and only if for every p inℳ
there is some f in A such that Ep(IG f) > 0. Since Ep⋃︀G( f ) = Ep(IG f)⇑Ep(IG), we have that
Ep(IG f) > 0⇔ Ep⋃︀G( f) > 0. So the conditional set of desirable gamble sets Kℳ⧹︀G is equal
to the E-admissible set of desirable gamble sets K{p⋃︀G∶p∈ℳ} obtained by an element-wise
application of Bayes’s rule onℳ.

We obtain the same result in a simpler way, using Proposition 7. Note that, by Lemma 5,
Kℳ is represented by {Dp∶ p ∈ℳ}, so Proposition 7 tells us that Kℳ⧹︀G is represented by
{Dp⧹︀G∶ p ∈ℳ}. Infer for any gamble f in ℒ(G) that

f ∈Dp⧹︀G⇔ IG f ∈Dp⇔ (Ep(IG f ) > 0 or IG f > 0)⇔ Ep(IG f ) > 0

7We use the (topological) interior int(Σ𝒳 ) of Σ𝒳 to make sure that every outcome in Ω has a (strictly) positive
probability for every element ofℳ, and therefore that Ep( f ) > 0 for every p inℳ and f in ℒ>0.
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⇔ Ep⋃︀G( f ) > 0⇔ (Ep⋃︀G( f ) > 0 or f > 0)⇔ f ∈Dp⋃︀G,

where the third and fourth equivalences hold because p ∈ int(Σ𝒳 ). This implies that p⋃︀G ∈
int(ΣG), which explains the fifth equivalence. So we find that Dp⧹︀G =Dp⋃︀G, and therefore
Kℳ⧹︀G is represented by {Dp⋃︀G∶ p ∈ℳ}. Again using Lemma 5, this implies that, indeed,
Kℳ⧹︀G =K{p⋃︀G∶p∈ℳ}. ◊

4. EPISTEMIC INDEPENDENCE FOR SETS OF EVENTS

Consider any two nonempty sets of events ℰ ,ℱ ⊆𝒫+(Ω). Intuitively, ℰ and ℱ represent
two topics of investigation. We can think of each event E in a set ℰ as posing a yes-no
question: did (will) E occur or not? A complete result of the investigation would be a truth
value assignment to every E in ℰ .

Suppose the agent has an assessment given by a set of desirable gamble sets K defined
on Ω. We want to ask: when does learning something about the first topic change the agent’s
beliefs about the second? Since Ω is finite, so is ℰ , and we let m ∶= ⋃︀ℰ ⋃︀ and ℰ = {E1, . . . ,Em}.

To develop an answer to this question, we first need to figure out: what do we mean
by learning about ℰ? And what are the beliefs about ℱ encoded in K? Our model of
learning will be factive and propositional: we mean that the agent updates (conditions)
on some proposition about ℰ . So, the first question is: what propositions are about ℰ?
Some propositions about ℰ result from assigning a truth value to every E in ℰ . Every such
proposition corresponds to an ℰ-atom in the set

𝒜ℰ ∶= {
m
⋂
k=1

Bk∶(∀k ∈ {1, . . . ,m}Bk ∈ {Ek,E
c
k})}∖{∅}

of all ℰ-atoms, which partitions Ω. Any element of the Boolean closure of ℰ is expressible
as the union of some constituents of ℰ .

So, what we mean by learning something about ℰ is obtaining information that some events
in ℰ do or do not obtain and (exclusive) disjunctions thereof, or in other words, learning
that an element of

𝒲ℰ ∶= {⋃G∶G ∈𝒫+(𝒜ℰ)} ⊆𝒫+(Ω)
occurs. Whenever ℰ does not exhaust of Ω, one could for instance learn that none of the
events in ℰ obtain. This corresponds to the event

m
⋂
k=1

Ec
k ∈𝒲ℰ .

As a trivial example, one could learn nothing about ℰ—by which we mean that there is
no event in ℰ of which we learn anything—which corresponds to the uninformative event
⋃𝒜ℰ =Ω, which we will leave as a degenerate case.

We represent learning by conditioning, as explained in Definition 7. However, in Section 3,
conditioning a coherent K ⊆𝒬(Ω) on an event E in 𝒫+(Ω) yields the coherent conditional
K⧹︀E ⊆𝒬(E). Because our definition of epistemic irrelevance will turn out cleaner, we will in
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this section work with a slightly different—but closely related—conditional set of desirable
gamble sets:8

K∏︁E ∶= {A ∈𝒬(Ω)∶IEA ∈K} ⊆𝒬(Ω).

Next, we need to explain what we mean by the agent’s beliefs about ℱ . To do this, we need
to relate gambles “about ℱ” to gambles on Ω.

Definition 8 (Cylindrical extension). Given any nonempty set of events ℱ ⊆𝒫+(Ω) and
any gamble f on 𝒜ℱ , we let its cylindrical extension f ∗ to Ω be defined by

f ∗(ω) ∶= f(B) where B is the unique element of 𝒜ℱ for which ω ∈ B,

for all ω in Ω. Similarly, given any set of gambles A ⊆ ℒ(𝒜ℱ), we let its cylindrical
extension A∗ ⊆ℒ(Ω) be defined as A∗ ∶= { f ∗∶ f ∈ A}.

Formally, f belongs to ℒ(𝒜ℱ) while f ∗ belongs to ℒ(Ω). However, f ∗ is constant on every
element of 𝒜ℱ , so depends only on which element of 𝒜ℱ occurs. Therefore, f ∗ is com-
pletely determined by f and vice versa and as such, they contain the same information and
correspond to the same transaction. They are therefore indistinguishable from a behavioral
point of view.

Remark 1. We will frequently use the simplifying device of identifying a gamble f on
𝒜ℱ with its cylindrical extension f ∗ on Ω, for any nonempty subset ℱ ⊆ 𝒫+(Ω). This
convention allows us, for instance, to identify ℒ(𝒜ℱ) with a subset of ℒ(Ω), and, as
another example, for any set A ⊆ℒ(Ω), to regard A∩ℒ(𝒜ℱ) as those gambles in A that are
constant on every value of 𝒜ℱ . Therefore, for any element E in 𝒫+(𝒜ℱ) we can identify
the gamble IE with I⋃E , and hence also the event E with ⋃E.

Suppose we have a set of desirable gamble sets K on Ω modelling an agent’s beliefs about
Ω. What is the information that K contains about ℱ , where ℱ ⊆𝒫+(Ω) is a nonempty set?
Marginalization captures this information.

Definition 9 (Marginalization). Given any nonempty subset ℱ of 𝒫+(Ω) and any set of
desirable gamble sets K on Ω, its marginal set of desirable gamble sets on 𝒜ℱ is defined as
margℱK ∶= {A ∈𝒬(𝒜ℱ)∶A ∈K} =K∩𝒬(𝒜ℱ).

The idea is that margℱK is the subset of K that concerns only gambles about ℱ . It fol-
lows at once from Definition 9 that marginalization preserves the order: if K1 ⊆ K2, then
margℱK1 ⊆margℱK2. For a set of desirable gambles D, this definition reduces to margℱD =
{ f ∈ℒ(𝒜ℱ)∶ f ∈D} =D∩ℒ(𝒜ℱ). For notational convenience, we lift the marginalization
operator margℱ on 𝒟 to a version on 𝒫(𝒟) defined by margℱD ∶= {margℱD∶D ∈D} for
any D ⊆𝒟.

Proposition 8. Consider any coherent set of desirable gambles D on Ω, and nonempty
subset ℱ ⊆ 𝒫+(Ω). Then margℱD is coherent. Moreover, consider any coherent set of
desirable gamble sets K on Ω, any representation D of K, and any nonempty subset
ℱ ⊆𝒫+(Ω). Then margℱK is coherent. Furthermore, margℱK is represented by margℱ(D),
meaning that margℱK =⋂{KD ∶D ∈margℱ(D)}.

8We use the same notation of ‘∏︁’ used by De Cooman and Quaeghebeur [16] for sets of desirable gambles.
Note that, similarly to [16], K∏︁E is not necessarily coherent as it may not contain all the non-negative and non-zero
singletons in ℒs

>0.
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Proof. For the first statement, from 0 ∉D, we infer 0 ∉margℱD =D∩ℒ(𝒜ℱ), establishing
that margℱD satisfies Axiom D1. To show that margℱD satisfies Axiom D2, consider any
f in ℒ(𝒜ℱ)>0. Then f ∈D by D’s coherence, whence f ∈margℱD. Since the choice of f
in ℒ(𝒜ℱ)>0 was arbitrary, this implies that, indeed, ℒ(𝒜ℱ)>0 ⊆margℱD. Finally, To show
that margℱD satisfies Axiom D3, consider any f and g in margℱD and any (λ ,µ) > 0. Then
λ f +µg ∈ D by D’s coherence, and furthermore λ f +µg ∈ D ∈ ℒ(𝒜ℱ), whence, indeed,
λ f +µg ∈margℱD.

We jump directly to the third statement, from which the second will follow using Theorem 3.
Consider any A in 𝒬(𝒜ℱ), and infer the following chain of equivalences:

A ∈margℱK⇔ A ∈K⇔ (∀D ∈D)A∩D ≠∅
⇔ (∀D ∈margℱD)A∩D ≠∅⇔ A ∈ ⋂

D∈margℱD
KD ,

where the second equivalence follows from the assumption that D represents K. Since
the choice of A in 𝒬(𝒜ℱ) was arbitrary, this implies that, indeed, margℱK =⋂{KD ∶D ∈
margℱ(D)}. □

Finally, we have the pieces in place to define what it means for an agent to judge that the
topic characterized by ℰ is epistemically irrelevant to the topic represented by ℱ ; we will
call this epistemic irrelevance of ℰ to ℱ , Epistemic independence of ℰ and ℱ is just the
symmetric version of this property.

Definition 10 (Epistemic irrelevance). Consider any nonempty subsets ℰ and ℱ of 𝒫+(Ω).
We call ℰ epistemically (subset) irrelevant to ℱ when learning about ℰ does not influence or
change the agent’s beliefs about ℱ . A set of desirable gamble sets K on Ω is said to satisfy
epistemic (subset) irrelevance of ℰ to ℱ when

margℱ(K∏︁E) =margℱK for all E in𝒲ℰ . (3)

The idea behind this definition is that observing that E in 𝒜ℰ turns K into the conditioned
set of desirable gamble sets K∏︁E on E. Then requiring that learning that any event E in𝒲ℰ
obtains does not affect the agent’s beliefs about ℱ amounts to requiring that the marginal
models of K and K∏︁E be equal.

Proposition 9. Consider any coherent set of desirable gamble sets K that satisfies epistemic
irrelevance from the nonempty ℰ ⊆𝒫+(Ω) to the nonempty ℱ ⊆𝒫+(Ω). Then every B in𝒜ℰ
intersects every B′ in 𝒜ℱ .

Proof. Consider any B in 𝒜ℰ and B′ in 𝒜ℱ . Since {IB′} belongs to ℒs(Ω)>0, we find
{IB′} ∈K by K’s coherence—more specifically, Axiom K2. Equation (3) then requires that
{IB′} ∈ margℱ(K∏︁E), whence {IB′} ∈ K∏︁E and therefore IB{IB′} = {IB∩B′} ∈ K. Use the
coherence of K—more specifically, Axioms K1 and K0—to infer that then IB∩B′ ≠ 0 whence,
indeed, B∩B′ ≠∅. □

4.1. Epistemic independence for events. Let us end this section by showing how in-
dependence for events follows from the discussion above as a special case. Roughly
speaking, what it means for an event E ∈ 𝒫+(Ω) to be epistemically irrelevant to an-
other event F ∈ 𝒫+(Ω), is that learning that the true outcome ω ∈ Ω belongs to E or to
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Ec does not change the inferences about {F,Fc}, which are described using gambles in
ℒ(𝒜{F}) = ℒ(𝒜{F,Fc}) = {λ IF + µIFc ∶λ ,µ ∈ R} that depend only on whether or not F
occurs.

In this case, ℰ ∶= {E,Ec} is the set of events that will be epistemically irrelevant to ℱ ∶=
{F,Fc}. Because both ℰ and ℱ are binary partitions, we find that 𝒜ℰ = {E,Ec} = ℰ and
𝒜ℱ = {E,Ec} =ℱ , and therefore also𝒲ℰ = {E,Ec,Ω},𝒲ℱ = {F,Fc,Ω}. In other words,
when the agent’s beliefs are described by the coherent set of desirable gamble sets K on Ω

that satisfies epistemic irrelevance of ℰ to ℱ , then any gamble set A in 𝒬(𝒜ℰ) =𝒬(ℰ)
belongs to K if and only if its called-off versions IEA and IEcA do.

Definition 11 (Epistemic irrelevance for events). Consider any two events E and F in
𝒫+(Ω), for which Ec and Fc are also nonempty. We call E epistemically irrelevant to F
when the partition {E,Ec} is epistemically (subset) irrelevant to the partition {F,Fc}. A set
of desirable gamble sets K is said to satisfy epistemic irrelevance of E to F if and only if

marg{F,Fc}(K∏︁E) =marg{F,Fc}(K∏︁Ec) =marg{F,Fc}K.

As a result from this definition, K satisfies epistemic irrelevance of E to F if and only if

(∀A ∈𝒬({F,Fc}))(A ∈K⇔ IEA ∈K⇔ IEcA ∈K). (4)

Clearly, epistemic irrelevance is closed under arbitrary intersections: if every set of desirable
gamble sets in a collection K satisfies epistemic irrelevance, then so does the set of desirable
gamble sets ⋂K. Example 4 further on shows that this definition is a generalization of the
independence concept for probabilities. Also, only logically independent events E and F, in
the sense that E∩F≠∅, E∩Fc ≠∅, Ec∩F≠∅, and Ec∩Fc ≠∅, can ever be epistemically
irrelevant with respect to a coherent set of desirable gamble sets K.

Corollary 10. Consider any coherent set of desirable gamble sets K that satisfies epistemic
irrelevance from the event E to the event F. Then E and F are logically independent.

Proof. This follows at once from Proposition 9 by considering ℰ ∶= {E,Ec} and ℱ ∶=
{F,Fc}. □

Let us finish this discussion by showing by means of the following example that the standard
independence condition satisfies epistemic independence under the assumption that every
outcome in Ω has a positive probability.

Example 4. Consider any credal set ℳ ⊆ int(ΣΩ) that contains only probability mass
functions that satisfy independence between two logically independent events E and F in
𝒫+: every p inℳ satisfies ∑ω∈E∩F p(ω) = (∑ϖ∈E p(ϖ))(∑ϖ ′∈F p(ϖ ′)), or equivalently,
its corresponding expectation operator Ep satisfies Ep(IE∩F) =Ep(IE)Ep(IF), and therefore
for any f = λ IF+µIFc in ℒ(𝒜{F}) also

Ep⋃︀E( f ) = Ep(IE f )
Ep(IE)

=
Ep(λ IE∩F+µIE∩Fc)

Ep(IE)

=
λEp(IE∩F)+µEp(IE∩Fc)

Ep(IE)
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= λEp(IE∩F)+µEp(IE)−µEp(IE∩F)
Ep(IE)

= λEp(IE)Ep(IF)+µEp(IE)−µEp(IE)Ep(IF)
Ep(IE)

= λEp(IF)+µ −µEp(IF) = λEp(IF)+µEp(IFc) = Ep( f ),
and hence Ep( f ) > 0⇔ Ep(IE f ) > 0. We will use this to study whether the E-admissible
set of desirable gamble sets Kℳ based onℳ, defined in Example 2, satisfies epistemic
independence between E and F. To this end, consider any A in 𝒬(𝒜{F}), and infer the
following equivalences:

A∩ℒ>0 ≠∅⇔ IEA∩ℒ>0 ≠∅
which follows from the logical independence of E and F, and

(∀p ∈ℳ)(∃ f ∈ A)Ep( f ) > 0⇔ (∀p ∈ℳ)(∃ f ∈ A)Ep(IE f ) > 0

⇔ (∀p ∈ℳ)(∃ f ∈ IEA)Ep( f ) > 0.

Together, this implies that

A ∈Kℳ⇔ A∩ℒ>0 ≠∅ or (∀p ∈ℳ)(∃ f ∈ A)Ep( f ) > 0

⇔ IEA∩ℒ>0 ≠∅ or (∀p ∈ℳ)(∃ f ∈ IEA)Ep( f ) > 0⇔ IEA ∈Kℳ.

Using an analogous argument where E takes the role of Ec shows that A ∈Kℳ⇔ IEcA ∈Kℳ.
Since the choice of A in𝒬(𝒜{F}) was arbitrary, this guarantees that Kℳ satisfies epistemic
irrelevance of E to F. A completely similar reasoning yields the result that Kℳ satisfies
epistemic irrelevance of F to E, too, and therefore epistemic independence between E and F.
◊

5. MULTIVARIATE SETS OF DESIRABLE GAMBLE SETS

In this section, we briefly present some of the concepts, tools, and notation we will need
for analyzing sets of desirable gamble sets in a multivariate context; our exposition closely
follows De Cooman and Miranda [15]. In Section 6, we apply Definition 10 in this context
to obtain the notions of epistemic independence of variables, and of the independent product.
We provide the linear space of gambles, on which we define our sets of desirable gamble sets,
with a more complex structure: we consider the vector space of all gambles whose domain
is a Cartesian product of a finite number of finite possibility spaces. More specifically,
consider n in N variables X1, . . . , Xn that assume values in the finite possibility spaces 𝒳1,
. . . , 𝒳n, respectively. Belief models about these variables X1, . . . , Xn will be defined using
gambles on 𝒳1, . . . , 𝒳n. We also consider gambles on the Cartesian product ⨉n

k=1𝒳k, giving
rise to the∏n

k=1⋃︀𝒳k⋃︀-dimensional linear space ℒ(⨉n
k=1𝒳k).

5.1. Basic Notation & Cylindrical Extension. For every nonempty subset I ⊆ {1, . . . ,n}
of indices, we let XI be the tuple of variables that takes values in 𝒳I ∶=⨉r∈I𝒳r.9 We will
denote generic elements of 𝒳I as xI or zI , whose components are xi ∶= xI(i) and zi ∶= zI(i),
for all i in I. As we did before, when I = {k, . . . ,ℓ} for some k,ℓ in {1, . . . ,n} with k ≤ ℓ, we

9Note that this guarantees that the variables X1, . . . , Xn are logically independent, meaning that for each
nonempty subset I of {1, . . . ,n}, xI may assume every value in 𝒳I .
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will use as a shorthand notation Xk∶ℓ ∶= (Xk, . . . ,Xℓ), taking values in 𝒳k∶ℓ and whose generic
elements are denoted by xk∶ℓ ∶= (xk, . . . ,xℓ).

It will be useful for any gamble f on 𝒳1∶n, any nonempty proper subset I of {1, . . . ,n} and
any xI in𝒳I , to interpret the partial map f(xI,⋅) as a gamble on𝒳Ic , where Ic ∶= {1, . . . ,n}∖I.
We will need a way to relate gambles on different domains.

Definition 12 (Cylindrical extension10). Given two disjoint and nonempty subsets I and I′

of {1, . . . ,n} and any gamble f on 𝒳I , we let its cylindrical extension f ∗ to 𝒳I∪I′ be defined
by f ∗(xI,xI′) ∶= f(xI) for all xI in 𝒳I and xI′ in 𝒳I′ . Similarly, given any set of gambles
A ⊆ℒ(𝒳I), we let its cylindrical extension A∗ ⊆ℒ(𝒳I∪I′) be defined as A∗ ∶= { f ∗∶ f ∈ A}.

Formally, f ∗ belongs to ℒ(𝒳I∪I′) while f belongs to ℒ(𝒳I). However, f ∗ is completely
determined by f and vice versa: they clearly only depend on the value of XI , and as such, they
contain the same information and correspond to the same transaction. They are therefore
indistinguishable from a behavioral point of view.

Remark 2. As in [13, 15], we will frequently use the simplifying device of identifying a
gamble f on 𝒳I with its cylindrical extension f ∗ on 𝒳I∪I′ , for any disjoint and nonempty
subsets I and I′ of the index set {1, . . . ,n}. This convention allows us, for instance, to
identify ℒ(𝒳I) with a subset of ℒ(𝒳1∶n), and, as another example, for any set A ⊆ℒ(𝒳1∶n),
to regard A∩ℒ(𝒳I) as those gambles in A that depend on the value of 𝒳I only. Therefore,
for any event E in 𝒫+(𝒳I) we can identify the gamble IE with IE×𝒳Ic , and hence also the
event E with E×𝒳Ic .

5.2. Marginalization. Suppose we have a set of desirable gamble sets K on 𝒳1∶n modelling
an agent’s beliefs about the variable X1∶n. What is the information that K contains about XO ,
where O is some nonempty subset of the index set {1, . . . ,n}? Marginalization captures this
information.

Definition 13 (Marginalization11). Given any nonempty subset O of {1, . . . ,n} and any set
of desirable gamble sets K on 𝒳1∶n, its marginal set of desirable gamble sets margOK on
𝒳O is defined as margOK ∶= {A ∈𝒬(𝒳O)∶A ∈K} =K∩𝒬(𝒳O). If O is a singleton {ℓ}, then
we denote marg{ℓ} by margℓ.

Since Definition 13 is a specialization of Definition 9, we have that, this specialized version
of marginalization preserves the order: if K1 ⊆K2, then margOK1 ⊆margOK2. This definition
coincides with the usual definition for sets of desirable gambles, in the sense that margOKD =
KmargO D , where margOD ∶= { f ∈ℒ(𝒳O)∶ f ∈D} =D∩ℒ(𝒳O). For notational convenience,
we lift the marginalization operator margO on𝒟 to a version on𝒫(𝒟) defined by margOD ∶=
{margOD∶D ∈D} for any D ⊆𝒟. The following proposition is an immediate consequence
of Proposition 8.

10After identifying the set 𝒳I with {{xI}×𝒳I′ ∶xI ∈𝒳I}, this definition may be seen as a specialized version
of Definition 8, with ℱ ∶= {{xI}×𝒳I′ ∶xI ∈ 𝒳I}. Note that ℱ’s atoms are 𝒜ℱ = ℱ , and a gamble f on 𝒜ℱ is
cylindrically extended to f ∗ given by f ∗(xI ,xI′) = f({xI}×𝒳I′) for every xI in 𝒳I and xI′ in 𝒳I′ .

11After identifying the set 𝒳I with {{xI}×𝒳I′ ∶xI ∈𝒳I}, this definition may be seen as a specialized version
of Definition 9 with ℱ ∶= {{xI}×𝒳Ic ∶xI ∈𝒳I}.
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Proposition 11. Consider any coherent set of desirable gamble sets K on 𝒳1∶n, any rep-
resentation D of K, and any nonempty subset O of {1, . . . ,n}. Then margOK is coherent.
Furthermore, margOK is represented by margO(D), meaning that margOK = ⋂{KD ∶D ∈
margO(D)}.

As a consequence, since any coherent K is represented by D(K), Proposition 11 implies
that in particular margOK =⋂{KD ∶D ∈margO(D(K))}.

5.3. Conditioning on Variables. In Section 3 we have seen how we can condition sets of
desirable gamble sets on events. Here, we take a closer look at conditioning in a multivariate
context.

Suppose we have a set of desirable gamble sets K on 𝒳1∶n, representing an agent’s beliefs
about the value of X1∶n. Assume now that we obtain the information that the I-tuple of
variables XI—where I is a nonempty proper subset of {1, . . . ,n}—assumes a value in a
certain nonempty subset EI of 𝒳I . There is no new information about the other variables
XIc . How can we condition K on this new information?

This is a particular instance of Definition 7, with the following specifications: Ω =𝒳1∶n and
E = EI ×𝒳Ic . The indicator IE of the conditioning event E satisfies IE(x1∶n) = IEI (xI) for all
x1∶n in 𝒳1∶n, and taking Remark 2 into account, therefore IE = IEI . Equation (1) defines the
multiplication of a gamble f on EI ×𝒳Ic with IEI to be a gamble IEI f on 𝒳1∶n, given by, for
all x1∶n in 𝒳1∶n:

IEI f(x1∶n) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

f(x1∶n) if xI ∈ EI

0 if xI ∉ EI
(5)

and the multiplication of IEI with a set A of gambles on EI×𝒳Ic is the set IEI A = {IEI f ∶ f ∈A}
of gambles on 𝒳1∶n.

Now that we have instantiated all the relevant aspects of Definition 7, we see that K⧹︀EI = {A ∈
𝒬(EI ×𝒳Ic)∶IEI A ∈ K}. Proposition 7 guarantees that K⧹︀EI is represented by D(K)⧹︀EI =
{D⧹︀EI ∶D ∈D(K)}, where in this context D⧹︀EI = { f ∈ℒ(EI ×𝒳Ic)∶IEI f ∈D}.

The conditional set of desirable gamble sets K⧹︀EI is defined on gambles on EI ×𝒳Ic .
However, usually—see, for instance, [7, 15]—conditioning on information about XI results
in a model on XIc . We consider

margIc(K⧹︀EI) = {A ∈𝒬(𝒳Ic)∶IEI A ∈K}
as the set of desirable gamble sets that represents the conditional beliefs about XIc , given that
XI ∈ EI . Note that Definition 13 can be applied to K⧹︀EI by interpreting EI as the possibility
space of an uncertain variable X , so K⧹︀EI is a set of desirable gamble sets about X ×XIc .
Propositions 7 and 11 guarantee the coherence of margIc(K⧹︀EI), for any coherent K.

6. INDEPENDENT NATURAL EXTENSION

Now that the basic operations on multivariate sets of desirable gamble sets—marginalization
and conditioning—are in place, we are ready to look at a simple type of structural assessment.
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The assessment that we will consider, is a specialized version of epistemic independence,
which we define to be a symmetrized version of epistemic irrelevance.

Definition 14 (Epistemic (subset) irrelevance12). Consider any disjoint and nonempty
subsets I and O of {1, . . . ,n}. We call XI epistemically (subset) irrelevant to XO when
learning about the value of XI does not influence or change the agent’s beliefs about XO . A
set of desirable gamble sets K on 𝒳1∶n is said to satisfy epistemic (subset) irrelevance of XI
to XO when

margO(K⧹︀EI) =margOK for all EI in 𝒫+(𝒳I). (6)

The idea behind this definition is that observing that XI belongs to EI turns K into the
conditioned set of desirable gamble sets K⧹︀EI on EI ×𝒳Ic . Then requiring that learning that
XI belongs to EI does not affect the agent’s beliefs about XO amounts to requiring that the
marginal models of K and K⧹︀EI be equal.

Definition 14 is a generalization of De Cooman and Miranda [15]’s definition for sets
of desirable gambles. Besides their use of the less expressive models of sets of desirable
gambles, there is another difference: De Cooman and Miranda [15] consider epistemic
value irrelevance, which requires the analogue of Equation (6) only for events of the form
EI = {xI}, with xI ∈𝒳I .

De Bock [7, Example 2] shows that the two notions do indeed come apart: he gives a
coherent set of desirable gambles that satisfies epistemic value irrelevance of X1 to X2, but
not epistemic subset irrelevance. Given the connection between sets of desirable gambles
and sets of desirable gamble sets, this example establishes that the two notions come apart
also in the context of sets of desirable gamble sets. We follow De Bock [7] in considering
epistemic subset-irrelevance to be the more natural of the two irrelevance concepts, as it
requires all information about the value of XI to be irrelevant, including partial information
of the form XI ∈ EI , and not only of the form XI = xI .13

Definition 15 (Epistemic (subset) many-to-one independence). We call X1, . . . , Xn epistemi-
cally (subset) many-to-one independent when learning about the values of any of them does
not influence or change the agent’s beliefs about any other: for any o in {1, . . . ,n}, and any
nonempty subset I of {1, . . . ,n}∖{o}, XI is epistemically subset irrelevant to Xo. We call
a set of desirable gamble sets K on 𝒳1∶n epistemically (subset) many-to-one independent
when

margo(K⧹︀EI) =margoK for all EI in 𝒫+(𝒳I) (7)

for all o in {1, . . . ,n} and nonempty subset I of {1, . . . ,n}∖{o}.

12Loosely speaking, ignoring the difference between the versions ‘⧹︀’ and ‘∏︁’ for conditioning, this definition
may be seen as a specialized version of Definition 10, where ℰ ∶= {xI ×𝒳Ic ∶xI ∈𝒳I} andℱ ∶= {xO ×𝒳Oc ∶xO ∈𝒳O}.
Note that𝒜ℰ = ℰ and𝒜ℱ =ℱ . The structure of𝒜ℰ and𝒜ℱ make the use of the ‘⧹︀’ conditioning version easier
than ‘∏︁’.

13Jasper De Bock [9] has moved to referring to what we call epistemic “value independence” as epistemic
“atom-independence”; similarly, “event-independence” replaces our “subset independence”. We eschew this
terminology only to avoid confusion with the notion of “events” on arbitrary outcome spaces that are used
elsewhere in this paper. In any case, hopefully the distinction is intuitive: “atom-” or “value” independence
considers only learning an element of the outcome space for a variable, whereas “event-” or “subset” irrelevance
considers any fact specifiable as a disjunction of outcomes.
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Every EI ∈ 𝒫+(𝒳I) can be identified with EI ×𝒳1∶n∖(I∪{o}) ∈ 𝒫+(𝒳{o}c) so the Require-
ment (7) reduces to

margo(K⧹︀E) =margoK for all E in 𝒫+(𝒳{o}c) (8)

for all o in {1, . . . ,n}.

Independence assessments are useful in constructing joint sets of desirable gamble sets
from local ones. Suppose we have a coherent set Kℓ of desirable gamble sets on 𝒳ℓ, for each
ℓ in {1, . . . ,n}, and an assessment that the variables X1, . . . , Xn are epistemically (subset)
many-to-one independent. Then how can we combine the coherent local assessments Kℓ and
this structural independence assessment into a coherent set of desirable gamble sets on 𝒳1∶n
in a way that is as conservative as possible? If we call any coherent and epistemically many-
to-one independent K on 𝒳1∶n that marginalizes to Kℓ for all ℓ in {1, . . . ,n} a many-to-one
independent product of K1, . . . , Kn, this means we are looking for the smallest many-to-one
independent product, which we will call the many-to-one independent natural extension of
K1, . . . , Kn, after [15].

6.1. Many-to-many independence. Contrast Definition 15 of epistemic many-to-one
independence with the stronger requirement of epistemic many-to-many independence.

Definition 16 (Epistemic (subset) many-to-many Independence). We call X1, . . . , Xn epis-
temically (subset) independent when learning about the values of any of them does not
influence or change the agent’s beliefs about the remaining ones: for any two disjoint
nonempty subsets I and O of {1, . . . ,n}, XI is epistemically subset irrelevant to XO . We call
a set of desirable gamble sets K on 𝒳1∶n epistemically (subset) many-to-many independent
when

margO(K⧹︀EI) =margOK for all EI in 𝒫+(𝒳I)
for all disjoint nonempty subsets I and O of {1, . . . ,n}.

In Theorem 15 further on we will find the many-to-one independent natural extension,
which therefore will be a conservative approximation of the many-to-many independent
natural extension—the smallest many-to-many independent product of X1, . . . , Xn. It is an
open question whether or not this approximation is exact.

In order to build on the work [15] of independent natural extension for sets of desirable
gambles, let us here define the analogous concepts in this context. We call a set of desirable
gambles D on 𝒳1∶n epistemically subset many-to-many independent when

margO(D⧹︀EI) =margOD for all EI in 𝒫+(𝒳I) (9)

for all disjoint nonempty subsets I and O of {1, . . . ,n}. Because of the connection with [15],
we will also need to define the weaker notion of epistemic value independence: We call a
set of desirable gambles D on 𝒳1∶n epistemically value many-to-many independent when

margO(D⧹︀{xI}) =margOD for all xI in 𝒳I (10)

Suppose we have a coherent set Dℓ of desirable gambles on 𝒳ℓ, for each ℓ in {1, . . . ,n}, and
an assessment that the variables X1, . . . , Xn are epistemically subset (or value) many-to-
many independent. Then how can we combine the coherent local assessments Dℓ and this
structural independence assessment into a coherent set of desirable gambles on 𝒳1∶n in a
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way that is as conservative as possible? If we call any coherent and epistemically subset (or
value) many-to-many independent D on 𝒳1∶n that marginalizes to Dℓ for all ℓ in {1, . . . ,n}
a subset (or value) many-to-many independent product of D1, . . . , Dn, this means we are
looking for the smallest many-to-many independent product, called by [15] the subset (or
value) many-to-many independent natural extension of D1, . . . , Dn.

Theorem 12 ([15, Theorem 19]). The value many-to-many independent natural extension
of the n coherent sets of desirable gambles D1 ⊆ℒ(𝒳1), . . . , Dn ⊆ℒ(𝒳n) exists and is given
by⊗n

k=1 Dk ∶= posi(⋃n
j=1 A1∶n∖{ j}→{ j}∪ℒ(𝒳1∶n)>0), where

A1∶n∖{ j}→{ j} ∶= {IE f ∶ f ∈D j and E ∈𝒫+(𝒳{ j}c)} (11)

for any j in {1, . . . ,n}.

As said, we are interested in the subset many-to-many independent natural extension, as we
find subset irrelevance a more natural concept than value irrelevance. Unfortunately, the
project of [15] considers value irrelevance only. However, Jasper De Bock [10] compared
the both approaches, in a more general context of independence assessments determined
by an underlying directed acyclic graph. In his work, the conclusions of [10, Corollary 12]
imply in the special case of many-to-many independence14 that ⊗n

k=1 Dk is also a subset
many-to-many independent product of D1, . . . , Dn, and therefore, as subset many-to-many
independence implies value many-to-many independence, it necessarily is the smallest
subset many-to-many independent product, or, in other words, it is the subset many-to-many
independent natural extension. For future reference, we conclude this result in the following
corollary.

Corollary 13 (follows from [10, Corollary 12]). The subset many-to-many independent
natural extension of the n coherent sets of desirable gambles D1 ⊆ℒ(𝒳1), . . . , Dn ⊆ℒ(𝒳n)
exists and is given by⊗n

k=1 Dk.

De Cooman and Miranda [15] do not discuss whether or not⊗n
k=1 Dk is also the many-to-one

independent natural extension of D1, . . . , Dn, which is defined similar to Definition 15 of
the corresponding concept for sets of desirable gamble sets. However, this is indeed the
case.15 To see this, let D⋆ be the many-to-one independent natural extension of D1, . . . , Dn.
As many-to-one independence is a weaker concept than many-to-many independence, it
follows that D⋆ ⊆⊗n

k=1 Dk. On the other hand, A1∶n∖{ j}→{ j} must belong to D⋆ for every
j in {1, . . . ,n} by its definition, and therefore, because posi is a closure operator, indeed
also ⊗n

k=1 Dk = posi(⋃n
j=1 A1∶n∖{ j}→{ j} ∪ℒ(𝒳1∶n)>0) ⊆ posi(D⋆ ∪ℒ(𝒳1∶n)>0) = D⋆, where

the final equality follows because D⋆ is the many-to-one independent natural extension and
is therefore coherent.

6.2. Many-to-one Independent Natural Extension. We will look for the many-to-one
independent natural extension for sets of desirable gamble sets. To this end, consider the
following counterpart of Equation (11)

𝒜1∶n∖{ j}→{ j} ∶= {IEA∶A ∈K j and E ∈𝒫+(𝒳{ j}c)} (12)

14How the result for independent products follows from their results for directed acyclic graphs, is discussed
in [10, Section 6]. Even thought the author does not explicitly mention that it holds for many-to-many independent
products, it is clear from the discussion in [10, Section 6] that this is indeed the case.

15We thank one of the reviewers for the providing us with the proof of this fact.
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for any j in {1, . . . ,n}, with which we build the following set of desirable gamble sets:

n
⊗
j=1

K j ∶=Rs(Posi(
n
⋃
j=1
𝒜1∶n∖{ j}→{ j}∪ℒs(𝒳1∶n)>0)).

We will show that the independent natural extension—the smallest independent product—of
K1, . . . , Kn is exactly⊗n

j=1 K j.

To find a representation of⊗n
j=1 K j, it will turn out useful to introduce the notation

⊗n
j=1D j ∶=𝒟 ∩{posi(⋃{IEDk,E ∶k ∈ {1, . . . ,n},E ∈𝒫+(𝒳{k}c)}∪ℒ(𝒳1∶n)>0)∶

(∀k ∈ {1, . . . ,n},E ∈𝒫+(𝒳{k}c))Dk,E ∈Dk} (13)

for any nonempty D1 ⊆𝒟(𝒳1), . . . , Dn ⊆𝒟(𝒳n). We know that⊗n
j=1 D j is nonempty, since

it contains the coherent
n
⊗
j=1

D j = posi(⋃{IEDk∶k ∈ {1, . . . ,n},E ∈𝒫+(𝒳{k}c)}∪ℒ(𝒳1∶n)>0)

for every D1 in D1, . . . , Dn in Dn.

Before we establish the main result of this paper, let us first prove the following lemma.

Lemma 14. Consider any coherent set of desirable gambles D ⊆ℒ(𝒳1∶n), any disjoint and
nonempty subsets I and O of {1, . . . ,n}, and any E in 𝒫+(𝒳I). Then

IEmargO(D⧹︀E) ⊆D.

Proof. Consider any f in IEmargO(D⧹︀E), implying that f = IEg for some g in margO(D⧹︀E),
which in turns implies that g belongs to D⧹︀E and to ℒ(𝒳O), and therefore IEg ∈ D us-
ing Equation (2). Since f = IEg, this implies that f belongs to D. The choice of f in
IEmargO(D⧹︀E) was arbitrary, whence indeed IEmargO(D⧹︀E) ⊆D. □

Theorem 15 (Independent many-to-one natural extension). Consider, for each j in {1, . . . ,n},
a coherent set of desirable gamble sets K j on 𝒳 j. Then the smallest many-to-one indepen-
dent product of K1, . . . , Kn is given by ⊗n

j=1K j. Furthermore, ⊗n
j=1K j is represented

by⊗n
j=1D(K j).

Proof. This proof will consist of five parts: we will subsequently show that (i) ⊗n
j=1K j

is coherent, (ii) it is represented by ⊗n
j=1D(K j), (iii) margℓ(⊗n

j=1K j) = Kℓ for every ℓ in
{1, . . . ,n}, (iv)⊗n

j=1K j satisfies epistemic many-to-one independence, and (v)⊗n
j=1K j is

the smallest such set of desirable gamble sets. Then (i), (iii) and (iv) establish that⊗n
j=1K j

is an independent many-to-one product of K1, . . . , Kn, which is by (v) the smallest one. (ii)
establishes the last claim about⊗n

j=1K j’s representation.

For (i), to show that ⊗n
j=1K j is coherent, we will regard 𝒜 ∶= ⋃n

j=1𝒜1∶n∖{ j}→{ j} as an
assessment on 𝒬(𝒳1∶n). By Theorem 6, showing that 𝒜 ⊆ KD for some coherent set of
desirable gambles D ⊆ℒ(𝒳1∶n) establishes that𝒜 is consistent. Theorem 2 then implies that
⊗n

j=1K j = cl
𝒦
(𝒜) is coherent.
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To this end, use Theorem 3 to note already that D(K1), . . . , D(Kn) all are nonempty since
K1, . . . , Kn are coherent. Consider any D1 in D(K1), . . . , Dn in D(Kn), and let D∗ ∶=⊗n

j=1 D j.
Then Corollary 13 implies that D∗ is a coherent set of desirable gambles on 𝒳1∶n that is
epistemically independent—by which we mean that margOD∗ = margO(D∗⧹︀EI) for all
disjoint nonempty subsets I and O of {1, . . . ,n} and EI in 𝒫+(𝒳I)—and marginalizes to
D1, . . . , Dn. We will show that 𝒜 ⊆ KD∗ . To this end, consider any A in 𝒜, meaning that
there is an index j in {1, . . . ,n} such that A ∈𝒜1∶n∖{ j}→{ j}, or, in other words, such that
A = IEB for some B in K j and E in 𝒫+(𝒳1∶n∖{ j}). Since D j belongs to D(K j) we have that
K j ⊆KD j , and therefore B ∈KD j =Kmarg jD∗ . Since Kmarg jD∗ =marg jKD∗ by Proposition 11,
this means that B ∈KD∗ . But D∗ is an epistemically independent set of desirable gambles,
and it therefore satisfies marg j(D∗⧹︀E) =marg jD

∗, or in other words, f ∈D∗⇔ IE f ∈D∗,
for any f in ℒ(𝒳 j), and hence also A = IEB ∈KD∗ . Since the choice of A in 𝒜 was arbitrary,
this implies that indeed 𝒜 ⊆KD∗ , guaranteeing that⊗n

j=1K j is indeed coherent.

For (ii), we prove that D(⊗n
j=1K j) = ↑⊗n

j=1D(K j): we will show the two set inclusions (a)
D(⊗n

j=1K j) ⊆ ↑⊗n
j=1D(K j) and (b) D(⊗n

j=1K j) ⊇ ↑⊗n
j=1D(K j). Then Proposition 4 implies

that⊗n
j=1D(K j) represents⊗n

j=1K j.

For (a), consider any D in D(⊗n
j=1K j). Then Theorem 6 implies that ⋃n

j=1𝒜1∶n∖{ j}→{ j} ⊆
KD , or, in other words,

(∀ j ∈ {1, . . . ,n},E ∈𝒫+(𝒳{ j}c),A ∈K j)IEA∩D ≠∅.

Consider any j in {1, . . . ,n}, E in 𝒫+(𝒳{ j}c) and A in K j. Then IEA ∩D ≠ ∅, and hence
A∩D⧹︀E ≠∅ using Equation (2). Since A belongs to𝒬(𝒳 j), we infer that A∩marg j(D⧹︀E) ≠
∅, whence A ∈Kmarg j(D⧹︀E). But the choice of A in K j was arbitrary, so K j ⊆Kmarg j(D⧹︀E) and
hence Theorem 3 tells us that marg j(D⧹︀E) belongs to D(K j). Using Lemma 14, we find that
IEmarg j(D⧹︀E) ⊆D, and hence, since the choices of j in {1, . . . ,n} and of E in 𝒫+(𝒳{ j}c)
were arbitrary, also ⋃{IEmarg j(D⧹︀E)∶ j ∈ {1, . . . ,n},E ∈𝒫+(𝒳{ j}c)} ⊆D. Recall that posi
is a closure operator—in particular, that it is monotonic—whence

D∗ ∶=posi(⋃{IEmarg j(D⧹︀E)∶ j ∈ {1, . . . ,n},E ∈𝒫+(𝒳{ j}c)}∪ℒ(𝒳1∶n)>0)
⊆posi(D∪ℒ(𝒳1∶n)>0) =D,

where the equality follows from D’s coherence. Note that D∗ is coherent—it is the natural
extension of a subset of the coherent D—so it belongs to⊗n

j=1D(K j), using Equation (13).
This implies that, indeed, D ∈ ↑⊗n

j=1D(K j)

Conversely, for (b), consider any D in ↑⊗n
j=1D(K j). Then D ⊇D′ for some D′ in⊗n

j=1D(K j),
implying that, for every j in {1, . . . ,n} and E in 𝒫+(𝒳{ j}c), there are D j,E in D(K j), such
that D′ = posi(⋃{IED j,E ∶ j ∈ {1, . . . ,n},E ∈𝒫+(𝒳{ j}c)}∪ℒ>0). Consider any A j in K j, for
all j in {1, . . . ,n}. Since D j,E belongs to D(K j), we find that A j ∩D j,E ≠∅, and hence also
IEA j ∩IED j,E ≠∅, for every j in {1, . . . ,n} and E in 𝒫+(𝒳{ j}c). Note that D ⊇D′ ⊇ IED j,E ,
where in the second set inclusion we used that posi is a closure operator which is therefore
extensive—meaning that B ⊆ posi(B) for every B ⊆ℒ—so we find that IEA j∩D ≠∅, whence
IEA j ∈KD , for every j in {1, . . . ,n} and E in 𝒫+(𝒳{ j}c). Since the choices of A j in K j for
all j in {1, . . . ,n} were arbitrary, this implies that ⋃n

j=1𝒜1∶n∖{ j}→{ j} ⊆KD , whence, indeed,
D ∈D(⊗n

j=1K j) using Theorem 6.
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Before we start the proof of (iii), let us first establish the following useful property, which
we will need in the proofs of (iii) and (iv): For any ℓ in {1, . . . ,n} and E in 𝒫+(𝒳{ℓ}c),

(∀A ∈𝒬(𝒳ℓ))A ∈Kℓ⇔ IEA ∈⊗n
j=1K j. (14)

For necessity, A ∈ Kℓ implies that A ∩Dℓ ≠ ∅ for all Dℓ in D(Kℓ). To show that then
IEA ∈⊗n

j=1K j we use ⊗n
j=1K j’s representation ⊗n

j=1D(K j), established above in (ii), so
by Theorem 3 it suffices to show that IEA ∩D ≠ ∅ for every D in ⊗n

j=1D(K j). To this
end, consider any D in⊗n

j=1D(K j). Then by Equation (13), for every j in {1, . . . ,n} and
G in 𝒫+(𝒳{ j}c) there are D j,G in D(K j) for which D = posi(⋃{IGD j,G ∶ j ∈ {1, . . . ,n},G ∈
𝒫+(𝒳{ j}c)}∪ℒ>0). For the choice j = ℓ and G = E, we know that Dℓ,E belongs to D(Kℓ)—
whence A ∩Dℓ,E ≠ ∅ and therefore IEA ∩ IEDℓ,E ≠ ∅—and also that the set of desirable
gambles IEDℓ,E belongs to {IGD j,G ∶ j ∈ {1, . . . ,n},G ∈𝒫+(𝒳{ j}c)} and is therefore a subset
of D, since posi is a closure operator, which is in particular monotonic—whence, indeed,
IEA∩D ≠∅.

For sufficiency, we use ⊗n
j=1K j’s representation ⊗n

j=1D(K j), established above in (ii),
to infer using Theorem 3 that IEA ∈⊗n

j=1K j implies that IEA ∩D ≠ ∅ for every D in
⊗n

j=1D(K j), and therefore in particular that IEA∩⊗n
j=1 D j ≠∅ for every D1 in D(K1), . . . ,

Dn in D(Kn), using Equation (13). Consider any D1 in D(K1), . . . , Dn in D(Kn), whence
IEA∩⊗n

j=1 D j ≠∅, which implies that IE f ∈⊗n
j=1 D j for some f in A. But Theorem 12 tells

us that⊗n
j=1 D j is an independent product of D1, . . . , Dn, and therefore IE f ∈⊗n

j=1 D j⇔
f ∈⊗n

j=1 D j. Since f belongs to ℒ(𝒳ℓ), we have that f ∈⊗n
j=1 D j⇔ f ∈margℓ⊗n

j=1 D j⇔
f ∈ Dℓ, where in the second equivalence we again used that ⊗n

j=1 D j is an independent
product of D1, . . . , Dn. This implies that A∩Dℓ ≠∅, and since the choice of Dℓ in D(Kℓ)
was arbitrary, by Theorem 3 also that, indeed, A ∈Kℓ.

For (iii), to show that margℓ(⊗n
j=1K j) = Kℓ for every ℓ in {1, . . . ,n}, consider any A in

𝒬(𝒳ℓ) and we need to show that A ∈Kℓ⇔ A ∈⊗n
j=1K j. Use Equation (14) with E =𝒳{ j}c ,

and infer that then I𝒳{ j}c A = A, which establishes this equivalence.

For (iv), by Equation (8) we need to show that IEA ∈⊗n
j=1K j ⇔ A ∈⊗n

j=1K j for all o
in {1, . . . ,n}, A in 𝒬(𝒳o) and E in 𝒫+(𝒳{o}c). Since A belongs to 𝒬(𝒳o), we have A ∈
⊗n

j=1K j ⇔ A ∈ margo⊗n
j=1K j ⇔ A ∈ Ko, where the final equivalence follows from the

earlier established marginalization property that margo⊗n
j=1K j =Ko. So, consider any o in

{1, . . . ,n}, A in 𝒬(𝒳o) and E in 𝒫+(𝒳{o}c), and it suffices to show that IEA ∈⊗n
j=1K j⇔

A ∈Ko. This follows indeed directly from Equation (14) with ℓ = o.

Finally, for (v), note that the results (i), (iii) and (iv) above imply that ⊗n
j=1K j is an

independent product of K1, . . . , Kn. To show that it also is the smallest such set of desirable
gamble sets, consider any independent product K∗ ⊆𝒬(𝒳1∶n) of K1, . . . , Kn. Since K∗ is
epistemically many-to-one independent, we have by Equation (8) in particular, for any o in
{1, . . . ,n} and E in 𝒫+(𝒳{o}c), that

margo(K∗⧹︀E) =margoK∗ =Ko,

where the first equality holds because K∗ is epistemically many-to-one independent, and the
second one because K∗ marginalizes to K1, . . . , Kn. This implies that any A in Ko should
belong to K∗⧹︀E, and hence that IEA ∈ K∗. Since this should hold for any o in {1, . . . ,n},
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A in Ko, and E in 𝒫+(𝒳{o}c), we have that ⋃n
j=1𝒜1∶n∖{ j}→{ j} ⊆K∗. Since K∗ is coherent,

also posi(⋃n
j=1𝒜1∶n∖{ j}→{ j} ∪ℒs(𝒳1∶n)>0) ⊆ K∗. But this tells us that ⊗n

j=1K j ⊆ K∗, and
since the choice of epistemically many-to-one independent product K∗ was arbitrary, this
establishes that⊗n

j=1K j indeed is the smallest independent product of K1, . . . , Kn. □

Interestingly, the many-to-one independent natural extension of binary sets of desirable
gambles, is binary itself.

Proposition 16. Consider, for each j in {1, . . . ,n}, a coherent set of desirable gambles D j
on 𝒳 j. Then K⊗n

j=1 D j =⊗n
j=1 KD j .

Proof. We will subsequently show that (i) K⊗n
j=1 D j ⊆⊗n

j=1 KD j and (ii) K⊗n
j=1 D j ⊇⊗n

j=1 KD j .

For (i), consider any A in K⊗n
j=1 D j . Then A∩⊗n

j=1 D j ≠∅, so let f ∈ A belong to⊗n
j=1 D j.

Then f ∈ℒ(𝒳1∶n)>0—in which case A ∈⊗n
j=1 KD j by coherence guaranteed by Theorem 15—

or f ≥ ∑m
k=1 λk fk for some m in N, f1, . . . , fm in ⋃n

j=1 A1∶n∖{ j}→{ j} and m real coeffi-
cients λ1∶m > 0. But then, for every k in {1, . . . ,m}, the gamble set Ak ∶= { fk} belongs to
⋃n

j=1𝒜1∶n∖{ j}→{ j} with K1 ∶=KD1 , . . . , Kn ∶=KDn , using Equations (11) and (12). Let further-

more λ
f1∶m

1∶m ∶= λ1∶m > 0 for the unique—and hence all— f1∶m in ⨉m
k=1 Ak. This implies that the

gamble set {∑m
k=1 λk fk}={∑m

k=1 λ
f1∶m

k fk∶ f1∶m ∈⨉m
k=1 Ak} belongs to Posi(⋃n

j=1𝒜1∶n∖{ j}→{ j})
and since f ≥ ∑m

k=1 λk fk, we find that also { f} ∈ Posi(⋃n
j=1𝒜1∶n∖{ j}→{ j} ∪ℒs(𝒳1∶n)>0),

by [11, Lemma 16]. Since f ∈ A, we have that then indeed A ∈⊗n
j=1 KD j .

For (ii), consider any A in ⊗n
j=1 KD j . This means that A ⊇ B ∖ℒ(𝒳1∶n)≤0 for some B

in Posi(⋃n
j=1𝒜1∶n∖{ j}→{ j} ∪ℒs(𝒳1∶n)>0) with K1 ∶= KD1 , . . . , Kn ∶= KDn , meaning that

B = {∑m
k=1 λ

f1∶m
k fk∶ f1∶m ∈ ⨉n

k=1 Bk} for some m in N, B1, . . . , Bm in ⋃n
j=1𝒜1∶n∖{ j}→{ j} ∪

ℒs(𝒳1∶n)>0 and, for every f1∶m in ⨉m
k=1 Bk, m real coefficients λ

f1∶m
1∶m > 0. For any k in

{1, . . . ,m} we have that Bk belongs to ℒs(𝒳1∶n)>0—in which case we call {gk} ∶= Bk—
or Bk = IEB′k for some j in {1, . . . ,n}, E in 𝒫+(𝒳{ j}c) and B′k in KD j , meaning that
B′k ∩D j ≠ ∅—in which case we let hk belong to B′k ∩D j and define gk ∶= IEhk ∈ Bk. Then
the gamble f ∶=∑m

k=1 λ
g1∶m
k gk belongs to B, and all of its terms belong to ℒ(𝒳1∶m)>0 or to

⋃n
j=1 A1∶n∖{ j}→{ j}. Then, by definition, f ∈⊗n

j=1 D j, so that B belongs to K⊗n
j=1 D j . Further-

more, because⊗n
j=1 D j is coherent (Theorem 12), f ∉ℒ≤0, and so A ∈K⊗n

j=1 D j . □

6.3. A Stronger Independence Requirement. In the discussion following Definition 15,
we have seen that a set of desirable gamble sets K is epistemically many-to-one independent
when Equation (8) holds, or, in other words, when

A ∈K⇔ IEA ∈K, (15)

for all o in {1, . . . ,n}, E in 𝒫+(𝒳{o}c) and A in 𝒬(𝒳{o}). This requires that, if A is a
desirable gamble set, then at least one gamble of {IE f ∶ f ∈ A} = IEA should be preferred
to zero, and hence IEA ∈ K. But one might argue that independence—or indeed, also
irrelevance—should require something stronger, namely that

EA ⋅A ∶= {IE f f ∶ f ∈ A} (16)
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should belong to K, for every choice of conditioning events EA ∶= {E f ∶ f ∈ A} ⊆𝒫+(𝒳{o}c).
The gamble set EA ⋅A is the result of multiplying any gamble f in A with its corresponding
indicator IE f with E f ∈ EA , so EA ⋅A contains the elements of A multiplied with (indicators
of) different events, rather than then same event E. This leads to the following stronger
independence requirement, which, as we shall see, has a tight connection with epistemic
independence: We say that K satisfies the stronger notion of many-to-one independence if

A ∈K⇔ EA ⋅A ∈K, (17)

for all o in {1, . . . ,n}, E in 𝒫+(𝒳{o}c) and A in 𝒬(𝒳{o}). This is a valid generalization of
many-to-one independence in the sense that, for any epistemically many-to-one independent
set of desirable gambles D, the binary KD satisfies the requirement in Equation (17), too.
We find this independence notion at least as compelling as epistemic independence. As EA
may contain only one event E, in which case EA ⋅A = {IE f ∶ f ∈ A} = IEA, this requirement
implies the usual requirement of Equation (15). This does not prevent the independent
many-to-one natural extension from satisfying the stronger requirement, but it is an open
question whether or not it does.

We will end this section with an example showing that the completely independent E-
admissible set of desirable gamble sets does satisfy the stronger independence requirement
or Equation (17), and even many-to-many independence.

Example 5. Consider for each j in {1, . . . ,n} a credal setℳ j ⊆ int(Σ𝒳 j),16 and consider the
completely independent [4, 26] credal set on 𝒳1∶n given byℳ ∶= {∏n

j=1 p j ∶ p1 ∈ℳ1, . . . , pn ∈
ℳn}. This credal setℳ will generally be non-convex.

Let us consider the E-admissible set of desirable gamble sets Kℳ, defined in Example 2.
Since ℳ marginalizes to ℳ1, . . . , ℳn, the set of desirable gamble sets Kℳ, too, will
marginalize to Kℳ1 , . . . , Kℳn . To see this, note by Lemma 5 that Kℳ is represented by
{Dp∶ p ∈ℳ}. Since margℓDp =Dmargℓp =Dpℓ ,

17 we find using Proposition 11 that margℓK
is represented by {Dp∶ p ∈ℳℓ} and hence margℓK = ⋂p∈ℳℓ

Dp = Kℳℓ
, for every ℓ in

{1, . . . ,n}. Moreover, Example 3 guarantees that Kℳ satisfies many-to-one independence,
and even many-to-many independence. This tells us that Kℳ is an independent product of
Kℳ1 , . . . , Kℳn .

To see that it indeed does satisfy the alternative independence requirement of Equation (17),
consider any A in 𝒬(𝒳O) and GA ⊆ 𝒫+(𝒳I). Infer for any p inℳ, f in A and G f in GA
that Ep(IG f f ) = Ep(IG f )Ep( f), so that the following equivalences hold: A ∈Kℳ⇔ (∀p ∈
ℳ)(∃ f ∈ A)Ep( f ) > 0⇔ (∀p ∈ℳ)(∃ f ∈ A)Ep(IG f f ) > 0⇔GA ⋅A ∈Kℳ, which implies
that Kℳ indeed satisfies Equation (17). Here we used the observation that, if A∩ℒ>0 ≠∅
then (∀p ∈ℳ)(∃ f ∈ A)Ep( f ) > 0, which holds becauseℳ ⊆ int(Σ𝒳 ), similar to what we
have done in Example 3 ◊

16We use the (topological) interior int(Σ𝒳 j) of Σ𝒳 j to make sure that every outcome in 𝒳 j has a (strictly)
positive probability for every element ofℳ j .

17Here, margℓp is defined in the usual way, as margℓp(xℓ) ∶= ∑x1∶n∖{ℓ}∈𝒳1∶n∖{ℓ} p(xℓ,x1∶n∖{ℓ}) for ev-
ery xℓ in 𝒳ℓ. For any gamble f on 𝒳ℓ its margℓp-expectation is Emargℓ p( f ) = ∑xℓ∈𝒳ℓ

margℓp(xℓ) f (xℓ) =
∑xℓ∈𝒳ℓ

∑x1∶n∖{ℓ}∈𝒳1∶n∖{ℓ} p(xℓ,x1∶n∖{ℓ}) f (xℓ) = ∑x1∶n∈𝒳1∶n p(x1∶n) f (xℓ) = ∑x1∶n∈𝒳1∶n p(x1∶n) f (x1∶n) = Ep( f ),
where we used the simplifying device of identifying f with its cylindrical extension to 𝒳1∶n in the penulti-
mate equality. This readily implies that Dmargℓ p = { f ∈ℒ(𝒳ℓ)∶Emargℓ p( f ) > 0 or f > 0} = { f ∈ℒ(𝒳ℓ)∶Ep( f ) >
0 or f > 0} =margℓDp, which explains the equality.
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7. CONTRASTING EPISTEMIC IRRELEVANCE WITH S-IRRELEVANCE

We have chosen to investigate the independent natural extension of sets of desirable gamble
sets according to the standard that we have called ‘epistemic irrelevance’, but there are
numerous other notions of irrelevance we might have investigated. One particularly inter-
esting conception of irrelevance is a notion due to Teddy Seidenfeld [28, Section 4] and
recently investigated by Jasper De Bock and Gert de Cooman [2]. The basic idea is that
one proposition is irrelevant to another if the agent doesn’t regard learning about the first
proposition as valuable to decisions that depend only on whether the second proposition is
true [2, Section 4.1]:

“When two variables, X and Y , are ‘independent’ then it is not reasonable
to spend resources in order to use the observed value of one of them, say
X , to choose between options that depend solely on the value of the other
variable, Y .”

To translate this into a workable definition, consider any partition 𝒫 of X’s finite possibility
space 𝒳 , and for every element E of 𝒫 , a gamble fE on Y ’s finite possibility space 𝒴 .
Then the suggested notion of irrelevance, which De Bock and De Cooman [2] term S-
irrelevance,18 is that an agent who judges that X is S-irrelevant to Y will be forced to
disprefer the composite gamble ∑E∈𝒫 IE(X) fE(Y)−ε , which is the result of paying ε to
find out which E∗ in 𝒫 occurs—the E∗ such that X ∈ E∗—in order to decide to take the
gamble fE∗(Y), to at least one of { fE ∶E ∈𝒫}. In other words, { fE −∑G∈𝒫 IG fG+ε ∶E ∈𝒫}
is a desirable gamble set. De Bock and De Cooman show that this is equivalent to the
following requirement.

Definition 17 ([2, Definition 9]). We say that X is S-irrelevant to Y with respect to a
coherent set of desirable gamble sets K if {∑G∈𝒫∖{E} IG( fE − fG)+ ε ∶E ∈ 𝒫} ∈ K for all
partitions 𝒫 of 𝒳 , fE ∈ℒ(𝒴) for all E in 𝒫 , and ε ∈R>0. X and Y are called S-independent
when X is S-irrelevant to Y and vice versa.

When X is a binary variable, meaning that 𝒳 = {x1,x2}, irrelevance of X to Y reduces to
{I{x1}

f +ε,−I{x2}
f +ε} ∈K, for all f in ℒ(𝒴) and ε ∈R>0.

S-irrelevance is an intuitively very compelling standard, which raises a natural question:
how is our concept of epistemic irrelevance related? It is already clear from De Bock and De
Cooman [2]’s analysis of S-irrelevance that it is not entailed by our notion of epistemic irrel-
evance; as they note [2, Theorem 10], under suitable continuity conditions19 S-irrelevance
has the surprising consequence forcing mixingness on the sets of desirable gamble sets,
which loosely speaking implies that the set of desirable gamble sets is represented by a
collection of linear previsions. Let us give an explicit example, specialized to our context.

Example 6. Consider the independent natural extension K1 ⊗K2 of two vacuous local
models K1 and K2 on 𝒳 and 𝒴 , respectively. We will show that this is the vacuous Kv

18After ‘Seidenfeld’.
19They are Archimedeanity and “credible indeterminacy”, which implies that there is one event E ⊆𝒳 whose

lower probability is strictly positive and upper probability strictly smaller than 1.
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on 𝒳 ×𝒴 . Indeed, Kv marginalizes to K1 and K2, and it also satisfies the independence
requirements of Equation (15):

A ∈Kv⇔ (∃ f ∈ A) f > 0⇔ (∃ f ∈ A)IE f > 0⇔ IEA ∈Kv,

for any A in𝒬(𝒳 ) and E in𝒫+(𝒴), or A in𝒬(𝒴) and E in𝒫+(𝒳 ). So Kv is an independent
product. Since it is the smallest coherent set of desirable gamble sets, it is equal to Kv =
K1⊗K2.

Let us show that K1⊗K2 does not satisfy S-irrelevance, and therefore also not S-indepen-
dence. To this end, assume that both 𝒳 = {x1,x2} and 𝒴 = {y1,y2} are binary. Consider
the gamble f ∶= ( f1(x1), f1(x2)) = (1,−1), any y in 𝒴 , and ε ∶= 1

2 > 0. The gamble set
{I{y} f +ε,−I{y} f +ε} does not contain a non-negative and non-zero gamble, and therefore
does not belong to K1⊗K2. This means that K1⊗K2 does not satisfy S-irrelevance from X
to Y . ◊

As far as we know, however, whether S-irrelevance entails our standard of epistemic
irrelevance has not yet been shown. In the following section, we develop an example which
shows that it is possible to satisfy S-irrelevance while flouting (both value and subset)
epistemic irrelevance. Thus, neither S- nor epistemic irrelevance entails the other.

7.1. Violating Epistemic Irrelevance While Satisfying S-Irrelevance. There are two gen-
eral ways it is possible to violate epistemic subset irrelevance while satisfying S-irrelevance.
A variable X fails to be epistemically irrelevant to a variable Y just in case A ∈K but IEA ∉K,
or IEA ∈K but A ∉K, for some E in 𝒫+(𝒳 ) and A in 𝒬(𝒴).

In essence, there is some proposition about the value of X that the agent can learn which
will change their views about the preferences for some gambles that depend only on Y . The
question we are interested in is whether there is a way for an agent who knows that learning
E will change their views about the preferences between these gambles to not place any
real monetary value on learning it. There are at least two ways that it occurs to us that this
could happen:

● the agent thinks that there is no real value gained by using the informed strategy over
merely accepting a wager without learning;

● the agent is certain that the experiment they are (not) paying for will not yield the outcome
which would change their beliefs.

In this subsection, we develop an example of the former. The framework of sets of desirable
gamble sets (and indeed, the less expressive framework of sets of desirable gambles) is
capable of representing an agent as believing that one outcome is infinitesimally more likely
than another. In the multivariate arena, this raises the possibility of correlations that generate
only infinitesimal change in belief. Information that generates such an infinitesimal change
will not have any real expected value as long as the gambles that are at issue have only finite
value, which is consistent with S-irrelevance; Nonetheless, learning the information does
make an identifiable change to which gambles the agent finds desirable, and thus subset
irrelevance is violated.
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Example 7. A factory produces two kinds of coins: coins that are fair (heads and tails are
equally likely) and coins that are infinitesimally biased in favor of heads (heads is more
likely than tails but not by any definite amount). Consider an agent who knows that a coin
produced by this factory is about to be flipped; the above description of the factory is all
they know. They have no beliefs about the proportion of coins of each type the factory
produces, or any specific reason to believe that the coin in question is of one type or the
other.

The agent is offered the following decision problem: they can accept a wager that pays
some real payout a if the coin lands heads and −a if tails, they can decline the wager
(maintain the status quo, accept the zero gamble), or they can pay some small (real-valued)
fee ε > 0 to learn the type of the coin, and then decide whether to accept or reject the
(a,−a) wager. Let X take values in 𝒳 ∶= {F,U} representing whether the coin is fair or
unfair and let Y take values in 𝒴 ∶= {H,T} representing whether the coin lands heads or
tails. For ease of future reference, we denote D1 ∶= { f ∶ f ∈ℒ(𝒴) and f(H)+ f(T) > 0} and
D2 ∶= { f ∶ f ∈ ℒ(𝒴) and ( f(H)+ f(T) > 0 or ( f(H)+ f(T) = 0 and f(H) > f(T)))}. Note
that D1 and D2 are coherent sets of desirable gambles.

We model the agent’s beliefs by I{F}D1 ∪ I{U}D2’s natural extension D ∶= posi(I{F}D1 ∪
I{U}D2∪ℒ(𝒳 ×𝒴)>0).

Lemma 17. D is a coherent set of desirable gambles. Moreover, it is no independent
product, because it fails epistemic irrelevance of X to Y .

Proof of Lemma 17. To show that D is coherent, it suffices by Theorem 1 to show that
ℒ≤0 ∩posi(I{F}D1 ∪ I{U}D2) = ∅. To this end, consider any f in posi(I{F}D1 ∪ I{U}D2),
meaning that f =∑m

k=1 λk fk for some m in N, real coefficients λ1∶m > 0, and gambles f1, . . . ,
fm in I{F}D1∪ I{U}D2. For every k in {1, . . . ,m}, if fk belongs to I{F}D1 then fk(U,H) =
fk(U,T) = 0 and fk(F,H)+ fk(F,T) > 0, and if fk belongs to I{U}D2 then fk(F,H) =
fk(F,T) = 0 and fk(U,H)+ fk(U,T) > 0, or fk(U,H)+ fk(U,T) = 0 but then fk(U,H) >
fk(U,T). This implies that f(⋅,H)+ f(⋅,T) ≥ 0, with equality only if all the fk with non-
zero coefficient λk belong to I{U}D2, in which case f(U,H) > f(U,T), whence f ≠ 0.
Therefore indeed f ∉ℒ≤0.

To show that it is no independent product, let us show that margY D ⊂margY (D⧹︀{U}), so
that learning that the coin is unfair, results in a bigger Y -marginal than not learning anything
at all. More specifically, we will show that margY D =D1 and margY (D⧹︀{U}) =D2.

To show that margY D ⊆D1, consider any f in margY D. Then f ∈ℒ(𝒴) and f ∈D, meaning
that f > 0—in which case f ∈ D1 by its coherence—or f ≥ ∑m

k=1 λk fk for some m in N,
real coefficients λ1∶m > 0, and gambles f1, . . . , fm in I{F}D1 ∪ I{U}D2. Note that then
f(y) ≥ ∑m

k=1 λk fk(x,y) for every x in 𝒳 and y in 𝒴 , and therefore 2 f(y) = ∑x∈𝒳 f(y) ≥
∑x∈𝒳 ∑m

k=1 λk fk(x,y), whence f(y) ≥ 1
2∑

m
k=1 λk∑x∈𝒳 fk(x,y), for every y in 𝒴 . Consider

any k in {1, . . . ,m}. If fk belongs to I{F}D1, then fk(U,H) = fk(U,T) = 0 and fk(F,H)+
fk(F,T) > 0, whence 1

2∑x∈𝒳 ∑y∈𝒴 fk(x,y) > 0. On the other hand, if fk belongs to I{U}D2,
then fk(U,H)+ fk(U,T) ≥ 0 and fk(F,H) = fk(F,T) = 0, whence 1

2∑x∈𝒳 ∑y∈𝒴 fk(x,y) ≥ 0.
As a consequence, if there is some k⋆ in {1, . . . ,m} such that λk∗ > 0 and fk⋆ belongs to
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I{F}D1, then

∑
y∈𝒴

f(y) ≥ 1
2

m

∑
k=1

λk ∑
x∈𝒳
∑
y∈𝒴

fk(x,y) =
1
2

λk⋆ ∑
x∈𝒳
∑
y∈𝒴

fk⋆(x,y)

)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
>0

+ 1
2

m

∑
k=1,k≠k⋆

λk ∑
x∈𝒳
∑
y∈𝒴

fk(x,y)

)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
≥0

> 0,

so f belongs to D1 by its definition. Otherwise, we infer that ∑n
k=1 λk fk(F,⋅) = 0 and

therefore also that f ≥ 0. Since the coherence of D, which we have established above,
disallows f ≠ 0, it follows that f > 0 and therefore, that f ∈D1.

That also margY D ⊇D1 follows once we realize that D1 ⊆D2, whence D ⊇ posi(I{F}D1∪
I{U}D1 ∪ℒ(𝒳 ×𝒴)>0) ⊇ posi(D1 ∪ℒ(𝒳 ×𝒴)>0), which is the smallest coherent set of
gambles on 𝒳 ×𝒴 that marginalizes to D1

20.

To show now that conditioning on {U} changes the marginal information margY (D⧹︀{U}) to
D2, let us show first that margY (D⧹︀{U})⊆D2. To this end, consider any f in margY (D⧹︀{U}),
then f in ℒ(𝒴) and I{U} f ∈D, meaning that I{U} f > 0—in which case f > 0 whence f ∈D2
by its coherence—or I{U} f ≥∑m

k=1 λk fk for some m in N, real coefficients λ1∶m > 0, and
gambles f1, . . . , fm in I{F}D1 ∪ I{U}D2. Note that not all fk with non-zero coefficient λk
can belong to I{F}D1 since that would imply that 0 = I{U}(F) f ≥∑m

k=1 λk fk(F,⋅), contra-
dicting the coherence of D1, so there are some fk with non-zero coefficient λk for which
fk ∈ I{U}D2. This implies that f = I{U}(U) f ≥∑m

k=1 λk fk(U,⋅), which indeed belongs to D2
by D2’s coherence.

To show, conversely, that margY (D⧹︀{U}) ⊇ D2, consider any f in D2. This implies that
I{U} f ∈ I{U}D2 ⊆D. By the conditioning rule for sets of desirable gambles

D⧹︀{U} ∶= { f ∈ℒ({U})∶I{U} f ∈D},
then f ∈D⧹︀{U}, and since f belongs to ℒ(𝒴), indeed f ∈margY (D⧹︀{U}). □

So D—and therefore KD , which is coherent since D is—fails to satisfy epistemic value
irrelevance, and therefore also epistemic subset irrelevance. However, despite this difference
in desirability dependent on learning about X , there is no positive value ε that the agent will
be willing to pay to learn the bias before deciding whether to accept or reject a gamble on
the outcome of the flip, so a gamble on 𝒴 . More generally, there are no gambles f and g
on 𝒴 such that the agent would pay to learn the bias of the coin before deciding between f
and g.

To show this formally, we consider KD and show that it satisfies S-irrelevance:

Lemma 18. X is S-irrelevant to Y with respect to KD .

Proof of Lemma 18. Since Y is a binary variable, it suffices to check that

{I{U} f +ε,−I{F} f +ε} ∈KD

20See De Cooman and Miranda [15, Proposition 7]; they term this the “cylindrical extension”, but this
terminology would subtly conflict with the way that we’ve defined the cylindrical extension of a set of gambles –
see defintion 12 above.



30 ARTHUR VAN CAMP, KEVIN BLACKWELL, JASON KONEK

for all f in ℒ(𝒴) and ε ∈R>0, as discussed right after Definition 17. Note already that, if
f = 0, then {I{U} f+ε,−I{F} f+ε} = {ε}, which belongs to KD by its coherence. So consider
any f ≠ 0 in ℒ(𝒴) and ε ∈R>0; we need to show that then I{U} f +ε or −I{F} f +ε belongs
to D. We will proceed by considering two exhaustive cases: (i) f ∈D2 and (ii) f ∉D2.

For (i) f ∈D2 implies that I{U} f ∈D by D’s definition. But then indeed also I{U} f +ε ∈D
by D’s coherence.

For (ii), f ∉ D2 entails that f(H)+ f(T) ≤ 0. So (− f(H)+ ε)+ (− f(T)+ ε) ≥ 2ε > 0, and
therefore − f +ε ∈D1. Using D’s definition, this implies that I{F}(− f +ε) ∈D. But −I{F} f +
ε ≥ I{F}(− f +ε) whence, by D’s coherence, indeed also −I{F} f +ε ∈D. □

So we conclude that KD satisfies S-irrelevance but no epistemic irrelevance. ◊

Thus, we have a case where X is not epistemically irrelevant to Y , but X is S-irrelevant to Y .
The upshot is that there are cases where learning about a variable X makes an identifiable
change to which gambles, defined only on 𝒴 , an agent prefers, but the agent sees this
difference as negligible in (real) value.

7.2. S-irrelevance Without Epistemic Irrelevance: 2nd Case. In this subsection, we
develop the second kind of case, which involves conditioning on events that had prior
probability zero.

Example 8. Consider an agent of whom the following two facts are true:

(1) The agent knows that Wensleydale is a variety of cheese.
(2) The agent assigns probability zero to the Moon being made of any kind of cheese; they

do, however, entertain it as a logical possibility.

It seems like our agent should be modelled as entertaining an outcome space that includes
at least the following possibilities:

● The Moon is not made of cheese (¬C).
● The Moon is made of Wensleydale (C∧W ).
● The Moon is made of some kind of cheese other than Wensleydale (C∧¬W ).

These possibilities constitute a partition of logical space, Ω = {¬C,C∧W,C∧¬W}, although
it’s certainly a very coarse partition that could easily be refined. But it will suffice for our
present purposes. The question of whether the moon is made of cheese or not is represented
by the partition 𝒞 = {{¬C},{C∧W,C∧¬W}}, the question of whether the moon is made of
Wensleydale is𝒲 = {{¬C,C∧¬W},{C∧W}}.

We have explicitly written the content of these propositions to make it clear that the Moon
being made of Wensleydale entails that the Moon is made of cheese. This is also reflected
in the fact that there is no cell of the partition representing ¬C∧W ; our agent – correctly! –
regards this as an impossible event.
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Given that W entails C, it seems obvious that it had better turn out that whether W (whether
{C∧W}) is not epistemically irrelevant to whether C (viz., {C∧W,C∧¬W}). What might
initially be less obvious is that our agent will judge W to be S-irrelevant to C. We’ll go
through the formal argument below, but the intuitive explanation is this: because the agent
gives prior probability zero to the moon being made of any kind of cheese (and hence,
Wensleydale), they will not see any value in paying to learn whether the Moon is made of
Wensleydale or not before making a decision that depends on whether the Moon is made of
cheese; although they know their beliefs about whether the Moon is made of cheese would
change completely if they learned it was made of Wensleydale, they assign probability zero
to learning this from the experiment. And so, they can’t see the value in paying for an
experiment whose outcome they anticipate with probability 1.

The formal model. Initially, the agent is represented by the set of desirable gambles
D ∶= {g ∈ℒ(Ω)∶g(¬C) > 0}∪ℒ>0(Ω).

Let ΣΩ be the set of all probability functions defined on Ω (defined analogously to the
definition of Σ𝒳 in Example 2). Believing that p(¬C) = 1 determines a unique probability
function p ∈ ΣΩ, namely p = (p(C∧W), p(C∧¬W), p(¬C)) = (0,0,1). Suppose our agent,
as is standard, wants to accept every gamble that has positive expected value according to
their probability function. It’s clear that Ep(g) = g(¬C), so Ep(g) > 0 iff g(¬C) > 0, and
therefore {g ∈ ℒ(Ω)∶Ep(g) > 0} = {g ∈ ℒ(Ω)∶g(¬C) > 0}. But D = {g ∈ ℒ(Ω)∶g(¬C) > 0}
is not coherent, because it fails to include gambles that are non-negative and non-zero, but
only in virtue of g(C∧W) or g(C∧¬W). However, D = {g ∈ℒ(Ω)∶g(¬C) > 0}∪ℒ>0(Ω)
is coherent (we give a proof below).21

First we show that𝒲 is not epistemically irrelevant to 𝒞. We can show this as an immediate
consequence of proposition 9: show that D is coherent which entails that KD is coherent (De
Bock and De Cooman [12, Proposition 8]), then KD cannot satisfy epistemic irrelevance of
𝒲 to 𝒞, because {C∧W}∩{¬C} =∅.

To see that D is coherent, check the validity of the three axioms D1–D3:

● D2. By construction, ℒ(Ω)>0 ⊂D.
● D3. Consider any f ,g in D and real (λ ,µ) > 0. Then either λ f +µg is non-negative and

non-zero (hence in D), or (λ f(¬C),µg(¬C)) > 0, in which case λ f(¬C)+µg(¬C) > 0,
hence λ f +µg in D.

● D1. If g(¬C) > 0 or g ∈ℒ(Ω)>0, then g ≠ 0.

Now, the more surprising part: we show that𝒲 is S-irrelevant to 𝒞. Because𝒲 is a binary
partition ({{C∧W},{¬C,C∧¬W}}), we can use the simpler version of S-irrelevance: KD

21Is the fact that the standard definition of coherence for sets of desirable gambles requires D ⊇ℒ>0 even if
the agent assigns probability 0 to attaining the positive payouts a problem? We’ve had several discussions about
this, and what we think is: no, as long as the outcomes are genuinely possible. Then it still makes sense to think
that these expected-value-0, non-negative, non-zero gambles weakly dominate the status quo: there is a possible
outcome where you win money and no outcome where you lose. We are intending this to be a case where the agent
does entertain the Moon being made of cheese as a logical possibility, just one that they would bet at any odds is
false.
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represents𝒲 as S-irrelevant to 𝒞 if and only if

(∀ f ∈ℒ(𝒞),ε ∈R>0){I{C∧W} f +ε,−I{¬C,C∧¬W} f +ε} ∈KD .

And given that our agent is representable by a set of desirable gambles (merely binary
comparisons suffice), this further collapses to: (∀ f ∈ ℒ(𝒞),ε ∈ R>0)(I{C∧W} f + ε ∈ D∨
−I{¬C,C∧¬W} f +ε ∈D).

Lemma 19. 𝒲 is S-irrelevant to 𝒞 with respect to KD .

Proof. In what follows, we will use the notation g = (g(C∧W),g(C∧¬W),g(¬C)) for a
gamble g on Ω.

Any gamble f ∈ℒ(𝒞) has the form f = (a,a,b), with a,b ∈R; thus, I{C∧W} f +ε = (a+ε,ε,ε).
Note that I{C∧W}(¬C) f (¬C)+ε = ε > 0. By construction, D contains any gamble g such
that g(¬C) > 0, so I{C∧W} f +ε ∈D, for any f ∈ℒ(𝒞). □

So here too, we have found a coherent set of desirable gamble sets KD that does not satisfy
epistemic irrelevance of𝒲 to 𝒞, but does satisfy S-irrelevance of𝒲 to 𝒞. In contrast with
Example 7, here the agent does believe that there is potentially a real value to be gained by
using the informed strategy over merely accepting a wager without learning. ◊

8. DISCUSSION

Independence is an interesting concept. When we model uncertainty with precise proba-
bilities, it seems univocal. But when we model uncertainty with imprecise probabilities, it
fractures into a multiplicity of distinct concepts, including:

● complete independence for sets of probabilities [4, 26];
● independence in selection for lower previsions [14];
● strong independence for lower previsions and sets of desirable gambles [15];
● epistemic independence (value and subset) for sets of desirable gambles [23];
● epistemic h-independence for lower previsions and credal sets [7];
● S-independence for choice functions [2];

These concepts collapse in the limit, when applied to precise probabilities, but come apart
in general.

Independence is also an important concept. For example, many have thought that when
pooling expert opinions we ought to preserve unanimous judgments of independence
[18, 20, 21]. Take another example: causal modelling. Causal Bayesian networks consist
of a directed acyclic graph together with an appropriate probability distribution. They are
popular formal tools for modelling causal relationships. Independence judgments play a key
role in constructing causal Bayes nets. Missing edges between variables in the graph of a
causal Bayes net indicate that those variables are causally independent of one another.

In this paper we investigated epistemic independence in the general framework of sets
of desirable gamble sets. We developed a very general notion of epistemic independence
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that subsumes the standard notion for uncertain variables in a multivariate setting [7].
We then characterized the independent natural extension and showed that it can be repre-
sented by a collection of sets of desirable gambles that can be obtained based on the local
representations.

In addition, we took some initial steps to compare epistemic independence with another
attractive notion of independence proposed by Teddy Seidenfeld: S-independence. Recently,
Jasper De Bock and Gert de Cooman [2, Corollary 1] showed that if an Archimedean set
of desirable gamble sets renders a variable X “credibly indeterminate”, then judging that
X is S-irrelevant to Y forces you to choose between gambles on Y using E-admissibility.
Judgments of S-irrelevance, it turns out, are much more informative than they appear at
first glance. An interesting next question is a characterisation of the conditions under which
S-irrelevance implies epistemic irrelevance. For instance, [2, Theorem 10] implies that, for
finite possibility spaces, Archimedeanity and credible indeterminacy, S-irrelevance implies
complete independence, which by Example 5 also satisfies epistemic irrelevance.

There are still a number of open questions about epistemic independence for sets of de-
sirable gamble sets. For example, Cozman and Seidenfeld [6] explore the notion of layer
independence for full conditional probability measures. Cozman [5] shows that the only
extant concept of independence for (non-convex) sets of probabilities that has a range of
graphoid properties is element-wise layer independence. Whether or not these graphoids
properties are all desirable in an imprecise-probabilistic context is questionable; see [7,
Section 6.5.3] and [8, Section 8]. It is an open question what additional structural constraints
on coherent sets of desirable gamble sets are necessary and sufficient to secure the relevant
graphoid properties.

A main open problem is to find an expression for the many-to-many independent natural
extension, which is arguably a more useful concept than the many-to-one independent
natural extension we have established here. We suspect that looking at sets of desirable
gamble sets with infinite gamble sets will be useful, because in such a context Proposition 4
becomes an equivalence. In fact, in retrospect we are now convinced that such sets of
“possibly infinite” desirable gamble sets are more promising. One saving grace for the
current notion, is that the largest representation D(K) of a coherent set of desirable gamble
sets K contains its minimal elements minD(K) in the poset (D(K),⊆), and these minimal
elements also represent K. We have a proof for this, but the result that hinged on this was
removed due to an insightful comment by one of the reviewers. Since this now no longer
has a direct use in this paper, we have decided to omit this result.

As sets of desirable gamble sets generalize many of the extant imprecise-probabilistic
uncertainty models, including sets of desirable gambles, lower previsions, and sets of proba-
bility mass functions, they may be expressive enough to unify some of the aforementioned
independence concepts. We intend to investigate these connections, with the hope to obtain
a unifying theory.
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